Cargando…
Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells
High powered, nanosecond duration, pulsed electric fields (nsPEF) cause cell death by a mechanism that is not fully understood and have been proposed as a targeted cancer therapy. Numerous chemotherapeutics work by disrupting microtubules. As microtubules are affected by electrical fields, this stud...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259788/ https://www.ncbi.nlm.nih.gov/pubmed/28117459 http://dx.doi.org/10.1038/srep41267 |