Cargando…

Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study

BACKGROUND: It has been suggested that greater maternal adiposity during pregnancy affects lifelong risk of offspring fatness via intrauterine mechanisms. Our aim was to use Mendelian randomisation (MR) to investigate the causal effect of intrauterine exposure to greater maternal body mass index (BM...

Descripción completa

Detalles Bibliográficos
Autores principales: Richmond, Rebecca C., Timpson, Nicholas J., Felix, Janine F., Palmer, Tom, Gaillard, Romy, McMahon, George, Davey Smith, George, Jaddoe, Vincent W., Lawlor, Debbie A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5261553/
https://www.ncbi.nlm.nih.gov/pubmed/28118352
http://dx.doi.org/10.1371/journal.pmed.1002221
_version_ 1782499599654584320
author Richmond, Rebecca C.
Timpson, Nicholas J.
Felix, Janine F.
Palmer, Tom
Gaillard, Romy
McMahon, George
Davey Smith, George
Jaddoe, Vincent W.
Lawlor, Debbie A.
author_facet Richmond, Rebecca C.
Timpson, Nicholas J.
Felix, Janine F.
Palmer, Tom
Gaillard, Romy
McMahon, George
Davey Smith, George
Jaddoe, Vincent W.
Lawlor, Debbie A.
author_sort Richmond, Rebecca C.
collection PubMed
description BACKGROUND: It has been suggested that greater maternal adiposity during pregnancy affects lifelong risk of offspring fatness via intrauterine mechanisms. Our aim was to use Mendelian randomisation (MR) to investigate the causal effect of intrauterine exposure to greater maternal body mass index (BMI) on offspring BMI and fat mass from childhood to early adulthood. METHODS AND FINDINGS: We used maternal genetic variants as instrumental variables (IVs) to test the causal effect of maternal BMI in pregnancy on offspring fatness (BMI and dual-energy X-ray absorptiometry [DXA] determined fat mass index [FMI]) in a MR approach. This was investigated, with repeat measurements, from ages 7 to 18 in the Avon Longitudinal Study of Parents and Children (ALSPAC; n = 2,521 to 3,720 for different ages). We then sought to replicate findings with results for BMI at age 6 in Generation R (n = 2,337 for replication sample; n = 6,057 for total pooled sample). In confounder-adjusted multivariable regression in ALSPAC, a 1 standard deviation (SD, equivalent of 3.7 kg/m2) increase in maternal BMI was associated with a 0.25 SD (95% CI 0.21–0.29) increase in offspring BMI at age 7, with similar results at later ages and when FMI was used as the outcome. A weighted genetic risk score was generated from 32 genetic variants robustly associated with BMI (minimum F-statistic = 45 in ALSPAC). The MR results using this genetic risk score as an IV in ALSPAC were close to the null at all ages (e.g., 0.04 SD (95% CI -0.21–0.30) at age 7 and 0.03 SD (95% CI -0.26–0.32) at age 18 per SD increase in maternal BMI), which was similar when a 97 variant generic risk score was used in ALSPAC. When findings from age 7 in ALSPAC were meta-analysed with those from age 6 in Generation R, the pooled confounder-adjusted multivariable regression association was 0.22 SD (95% CI 0.19–0.25) per SD increase in maternal BMI and the pooled MR effect (pooling the 97 variant score results from ALSPAC with the 32 variant score results from Generation R) was 0.05 SD (95%CI -0.11–0.21) per SD increase in maternal BMI (p-value for difference between the two results = 0.05). A number of sensitivity analyses exploring violation of the MR results supported our main findings. However, power was limited for some of the sensitivity tests and further studies with relevant data on maternal, offspring, and paternal genotype are required to obtain more precise (and unbiased) causal estimates. CONCLUSIONS: Our findings provide little evidence to support a strong causal intrauterine effect of incrementally greater maternal BMI resulting in greater offspring adiposity.
format Online
Article
Text
id pubmed-5261553
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-52615532017-02-17 Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study Richmond, Rebecca C. Timpson, Nicholas J. Felix, Janine F. Palmer, Tom Gaillard, Romy McMahon, George Davey Smith, George Jaddoe, Vincent W. Lawlor, Debbie A. PLoS Med Research Article BACKGROUND: It has been suggested that greater maternal adiposity during pregnancy affects lifelong risk of offspring fatness via intrauterine mechanisms. Our aim was to use Mendelian randomisation (MR) to investigate the causal effect of intrauterine exposure to greater maternal body mass index (BMI) on offspring BMI and fat mass from childhood to early adulthood. METHODS AND FINDINGS: We used maternal genetic variants as instrumental variables (IVs) to test the causal effect of maternal BMI in pregnancy on offspring fatness (BMI and dual-energy X-ray absorptiometry [DXA] determined fat mass index [FMI]) in a MR approach. This was investigated, with repeat measurements, from ages 7 to 18 in the Avon Longitudinal Study of Parents and Children (ALSPAC; n = 2,521 to 3,720 for different ages). We then sought to replicate findings with results for BMI at age 6 in Generation R (n = 2,337 for replication sample; n = 6,057 for total pooled sample). In confounder-adjusted multivariable regression in ALSPAC, a 1 standard deviation (SD, equivalent of 3.7 kg/m2) increase in maternal BMI was associated with a 0.25 SD (95% CI 0.21–0.29) increase in offspring BMI at age 7, with similar results at later ages and when FMI was used as the outcome. A weighted genetic risk score was generated from 32 genetic variants robustly associated with BMI (minimum F-statistic = 45 in ALSPAC). The MR results using this genetic risk score as an IV in ALSPAC were close to the null at all ages (e.g., 0.04 SD (95% CI -0.21–0.30) at age 7 and 0.03 SD (95% CI -0.26–0.32) at age 18 per SD increase in maternal BMI), which was similar when a 97 variant generic risk score was used in ALSPAC. When findings from age 7 in ALSPAC were meta-analysed with those from age 6 in Generation R, the pooled confounder-adjusted multivariable regression association was 0.22 SD (95% CI 0.19–0.25) per SD increase in maternal BMI and the pooled MR effect (pooling the 97 variant score results from ALSPAC with the 32 variant score results from Generation R) was 0.05 SD (95%CI -0.11–0.21) per SD increase in maternal BMI (p-value for difference between the two results = 0.05). A number of sensitivity analyses exploring violation of the MR results supported our main findings. However, power was limited for some of the sensitivity tests and further studies with relevant data on maternal, offspring, and paternal genotype are required to obtain more precise (and unbiased) causal estimates. CONCLUSIONS: Our findings provide little evidence to support a strong causal intrauterine effect of incrementally greater maternal BMI resulting in greater offspring adiposity. Public Library of Science 2017-01-24 /pmc/articles/PMC5261553/ /pubmed/28118352 http://dx.doi.org/10.1371/journal.pmed.1002221 Text en © 2017 Richmond et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Richmond, Rebecca C.
Timpson, Nicholas J.
Felix, Janine F.
Palmer, Tom
Gaillard, Romy
McMahon, George
Davey Smith, George
Jaddoe, Vincent W.
Lawlor, Debbie A.
Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study
title Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study
title_full Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study
title_fullStr Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study
title_full_unstemmed Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study
title_short Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study
title_sort using genetic variation to explore the causal effect of maternal pregnancy adiposity on future offspring adiposity: a mendelian randomisation study
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5261553/
https://www.ncbi.nlm.nih.gov/pubmed/28118352
http://dx.doi.org/10.1371/journal.pmed.1002221
work_keys_str_mv AT richmondrebeccac usinggeneticvariationtoexplorethecausaleffectofmaternalpregnancyadiposityonfutureoffspringadiposityamendelianrandomisationstudy
AT timpsonnicholasj usinggeneticvariationtoexplorethecausaleffectofmaternalpregnancyadiposityonfutureoffspringadiposityamendelianrandomisationstudy
AT felixjaninef usinggeneticvariationtoexplorethecausaleffectofmaternalpregnancyadiposityonfutureoffspringadiposityamendelianrandomisationstudy
AT palmertom usinggeneticvariationtoexplorethecausaleffectofmaternalpregnancyadiposityonfutureoffspringadiposityamendelianrandomisationstudy
AT gaillardromy usinggeneticvariationtoexplorethecausaleffectofmaternalpregnancyadiposityonfutureoffspringadiposityamendelianrandomisationstudy
AT mcmahongeorge usinggeneticvariationtoexplorethecausaleffectofmaternalpregnancyadiposityonfutureoffspringadiposityamendelianrandomisationstudy
AT daveysmithgeorge usinggeneticvariationtoexplorethecausaleffectofmaternalpregnancyadiposityonfutureoffspringadiposityamendelianrandomisationstudy
AT jaddoevincentw usinggeneticvariationtoexplorethecausaleffectofmaternalpregnancyadiposityonfutureoffspringadiposityamendelianrandomisationstudy
AT lawlordebbiea usinggeneticvariationtoexplorethecausaleffectofmaternalpregnancyadiposityonfutureoffspringadiposityamendelianrandomisationstudy