Cargando…

Periostin Upregulates Wnt/β-Catenin Signaling to Promote the Osteogenesis of CTLA4-Modified Human Bone Marrow-Mesenchymal Stem Cells

The enhanced osteogenesis of mesenchymal stem cells (MSCs) modified by expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) has been shown in previous studies, but the mechanism remains unknown. Here we found that the bone repair effect of CTLA4-modified MSCs in demineralized bone matri...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Fei, Luo, Keyu, Rong, Zhigang, Wang, Zhengdong, Luo, Fei, Zhang, Zehua, Sun, Dong, Dong, Shiwu, Xu, Jianzhong, Dai, Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5269711/
https://www.ncbi.nlm.nih.gov/pubmed/28128364
http://dx.doi.org/10.1038/srep41634
Descripción
Sumario:The enhanced osteogenesis of mesenchymal stem cells (MSCs) modified by expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) has been shown in previous studies, but the mechanism remains unknown. Here we found that the bone repair effect of CTLA4-modified MSCs in demineralized bone matrix (DBM) in a rabbit radius defect model was significantly better than that observed for unmodified MSCs in DBM or DBM alone, and the periostin (POSTN) expression in CTLA4-modified MSCs was significantly higher than that in unmodified MSCs both in vivo and in vitro. In addition, we also found that treatment of CTLA4-modified MSCs with soluble POSTN could inhibit the glycogen synthase kinase-3β activity and increase β-catenin expression through up-regulation of lipoprotein-related protein-6 phosphorylation to promote osteogenic differentiation, but blocking of integrin αvβ3, a receptor of POSTN, could suppress these effects. Our data demonstrated that POSTN expressed in response to CTLA4 can promote the osteogenesis of xenotransplanted MSCs through interaction with Wnt/β-catenin pathway.