Cargando…

Inhibitory effect of a novel peptide, H-RN, on keratitis induced by LPS or poly(I:C) in vitro and in vivo via suppressing NF-κB and MAPK activation

BACKGROUND: Keratitis is a common cause of blindness. Current anti-inflammatory drugs used in keratitis have profound side effects. Small peptides derived from endogenous proteins potentially display both desired efficiency and safety. We identified an 11-amino-acid peptide, H-RN, from hepatocyte gr...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Shaopin, Xu, Xun, Wang, Lili, Su, Li, Gu, Qing, Wei, Fang, Liu, Kun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270222/
https://www.ncbi.nlm.nih.gov/pubmed/28125988
http://dx.doi.org/10.1186/s12967-017-1121-z
Descripción
Sumario:BACKGROUND: Keratitis is a common cause of blindness. Current anti-inflammatory drugs used in keratitis have profound side effects. Small peptides derived from endogenous proteins potentially display both desired efficiency and safety. We identified an 11-amino-acid peptide, H-RN, from hepatocyte growth factor (HGF), an endogenous protein with anti-inflammatory properties. We evaluated the effects of H-RN in keratitis in vitro and in vivo. METHODS: In vitro, corneal fibroblasts were stimulated with LPS or poly(I:C), surrogates for bacteria and viruses. Inflammatory cytokines, intercellular cell adhesion molecule-1 (ICAM-1), translocation of NF-κB p65, activation of IκBα, NF-κB, and MAPKs were detected. In vivo, keratitis in rats was induced by LPS. Clinical, histological observation, and quantification of cytokines in the cornea were conducted. H-RN safety was measured by cell viability, clinical, histological, and microstructural observations. RESULTS: H-RN inhibited IL-6, monocyte chemotactic protein-1(MCP-1), Interferon- γ(IFN-γ), and ICAM-1 expression triggered by LPS or poly(I:C), alleviated the clinical manifestation and reduced the clinical score in keratitis in vivo. The histological disorder and proinflammatory cytokines of the cornea were also reduced. The translocation of NF-κB and phosphorylation of IκBα, NF-κB, p38, JNK, and ERK were significantly inhibited by H-RN. No sign of toxicity was observed. CONCLUSIONS: H-RN effectively attenuated keratitis in vivo and in vitro induced by LPS or poly(I:C) through blocking NF-κB and MAPK signaling pathways. It may be a promising and safe agent in treating keratitis.