Cargando…

TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach

We report simulation of nanostructured memristor device using piecewise linear and nonlinear window functions for RRAM and neuromorphic applications. The linear drift model of memristor has been exploited for the simulation purpose with the linear and non-linear window function as the mathematical a...

Descripción completa

Detalles Bibliográficos
Autores principales: Dongale, T. D., Patil, P. J., Desai, N. K., Chougule, P. P., Kumbhar, S. M., Waifalkar, P. P., Patil, P. B., Vhatkar, R. S., Takale, M. V., Gaikwad, P. K., Kamat, R. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korea Nano Technology Research Society 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5271148/
https://www.ncbi.nlm.nih.gov/pubmed/28191426
http://dx.doi.org/10.1186/s40580-016-0076-8
_version_ 1782501298026840064
author Dongale, T. D.
Patil, P. J.
Desai, N. K.
Chougule, P. P.
Kumbhar, S. M.
Waifalkar, P. P.
Patil, P. B.
Vhatkar, R. S.
Takale, M. V.
Gaikwad, P. K.
Kamat, R. K.
author_facet Dongale, T. D.
Patil, P. J.
Desai, N. K.
Chougule, P. P.
Kumbhar, S. M.
Waifalkar, P. P.
Patil, P. B.
Vhatkar, R. S.
Takale, M. V.
Gaikwad, P. K.
Kamat, R. K.
author_sort Dongale, T. D.
collection PubMed
description We report simulation of nanostructured memristor device using piecewise linear and nonlinear window functions for RRAM and neuromorphic applications. The linear drift model of memristor has been exploited for the simulation purpose with the linear and non-linear window function as the mathematical and scripting basis. The results evidences that the piecewise linear window function can aptly simulate the memristor characteristics pertaining to RRAM application. However, the nonlinear window function could exhibit the nonlinear phenomenon in simulation only at the lower magnitude of control parameter. This has motivated us to propose a new nonlinear window function for emulating the simulation model of the memristor. Interestingly, the proposed window function is scalable up to f(x) = 1 and exhibits the nonlinear behavior at higher magnitude of control parameter. Moreover, the simulation results of proposed nonlinear window function are encouraging and reveals the smooth nonlinear change from LRS to HRS and vice versa and therefore useful for the neuromorphic applications.
format Online
Article
Text
id pubmed-5271148
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Korea Nano Technology Research Society
record_format MEDLINE/PubMed
spelling pubmed-52711482017-02-09 TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach Dongale, T. D. Patil, P. J. Desai, N. K. Chougule, P. P. Kumbhar, S. M. Waifalkar, P. P. Patil, P. B. Vhatkar, R. S. Takale, M. V. Gaikwad, P. K. Kamat, R. K. Nano Converg Research We report simulation of nanostructured memristor device using piecewise linear and nonlinear window functions for RRAM and neuromorphic applications. The linear drift model of memristor has been exploited for the simulation purpose with the linear and non-linear window function as the mathematical and scripting basis. The results evidences that the piecewise linear window function can aptly simulate the memristor characteristics pertaining to RRAM application. However, the nonlinear window function could exhibit the nonlinear phenomenon in simulation only at the lower magnitude of control parameter. This has motivated us to propose a new nonlinear window function for emulating the simulation model of the memristor. Interestingly, the proposed window function is scalable up to f(x) = 1 and exhibits the nonlinear behavior at higher magnitude of control parameter. Moreover, the simulation results of proposed nonlinear window function are encouraging and reveals the smooth nonlinear change from LRS to HRS and vice versa and therefore useful for the neuromorphic applications. Korea Nano Technology Research Society 2016-07-18 /pmc/articles/PMC5271148/ /pubmed/28191426 http://dx.doi.org/10.1186/s40580-016-0076-8 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Dongale, T. D.
Patil, P. J.
Desai, N. K.
Chougule, P. P.
Kumbhar, S. M.
Waifalkar, P. P.
Patil, P. B.
Vhatkar, R. S.
Takale, M. V.
Gaikwad, P. K.
Kamat, R. K.
TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach
title TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach
title_full TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach
title_fullStr TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach
title_full_unstemmed TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach
title_short TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach
title_sort tio(2) based nanostructured memristor for rram and neuromorphic applications: a simulation approach
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5271148/
https://www.ncbi.nlm.nih.gov/pubmed/28191426
http://dx.doi.org/10.1186/s40580-016-0076-8
work_keys_str_mv AT dongaletd tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach
AT patilpj tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach
AT desaink tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach
AT chougulepp tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach
AT kumbharsm tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach
AT waifalkarpp tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach
AT patilpb tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach
AT vhatkarrs tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach
AT takalemv tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach
AT gaikwadpk tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach
AT kamatrk tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach