Cargando…
TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach
We report simulation of nanostructured memristor device using piecewise linear and nonlinear window functions for RRAM and neuromorphic applications. The linear drift model of memristor has been exploited for the simulation purpose with the linear and non-linear window function as the mathematical a...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Nano Technology Research Society
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5271148/ https://www.ncbi.nlm.nih.gov/pubmed/28191426 http://dx.doi.org/10.1186/s40580-016-0076-8 |
_version_ | 1782501298026840064 |
---|---|
author | Dongale, T. D. Patil, P. J. Desai, N. K. Chougule, P. P. Kumbhar, S. M. Waifalkar, P. P. Patil, P. B. Vhatkar, R. S. Takale, M. V. Gaikwad, P. K. Kamat, R. K. |
author_facet | Dongale, T. D. Patil, P. J. Desai, N. K. Chougule, P. P. Kumbhar, S. M. Waifalkar, P. P. Patil, P. B. Vhatkar, R. S. Takale, M. V. Gaikwad, P. K. Kamat, R. K. |
author_sort | Dongale, T. D. |
collection | PubMed |
description | We report simulation of nanostructured memristor device using piecewise linear and nonlinear window functions for RRAM and neuromorphic applications. The linear drift model of memristor has been exploited for the simulation purpose with the linear and non-linear window function as the mathematical and scripting basis. The results evidences that the piecewise linear window function can aptly simulate the memristor characteristics pertaining to RRAM application. However, the nonlinear window function could exhibit the nonlinear phenomenon in simulation only at the lower magnitude of control parameter. This has motivated us to propose a new nonlinear window function for emulating the simulation model of the memristor. Interestingly, the proposed window function is scalable up to f(x) = 1 and exhibits the nonlinear behavior at higher magnitude of control parameter. Moreover, the simulation results of proposed nonlinear window function are encouraging and reveals the smooth nonlinear change from LRS to HRS and vice versa and therefore useful for the neuromorphic applications. |
format | Online Article Text |
id | pubmed-5271148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Korea Nano Technology Research Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-52711482017-02-09 TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach Dongale, T. D. Patil, P. J. Desai, N. K. Chougule, P. P. Kumbhar, S. M. Waifalkar, P. P. Patil, P. B. Vhatkar, R. S. Takale, M. V. Gaikwad, P. K. Kamat, R. K. Nano Converg Research We report simulation of nanostructured memristor device using piecewise linear and nonlinear window functions for RRAM and neuromorphic applications. The linear drift model of memristor has been exploited for the simulation purpose with the linear and non-linear window function as the mathematical and scripting basis. The results evidences that the piecewise linear window function can aptly simulate the memristor characteristics pertaining to RRAM application. However, the nonlinear window function could exhibit the nonlinear phenomenon in simulation only at the lower magnitude of control parameter. This has motivated us to propose a new nonlinear window function for emulating the simulation model of the memristor. Interestingly, the proposed window function is scalable up to f(x) = 1 and exhibits the nonlinear behavior at higher magnitude of control parameter. Moreover, the simulation results of proposed nonlinear window function are encouraging and reveals the smooth nonlinear change from LRS to HRS and vice versa and therefore useful for the neuromorphic applications. Korea Nano Technology Research Society 2016-07-18 /pmc/articles/PMC5271148/ /pubmed/28191426 http://dx.doi.org/10.1186/s40580-016-0076-8 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Dongale, T. D. Patil, P. J. Desai, N. K. Chougule, P. P. Kumbhar, S. M. Waifalkar, P. P. Patil, P. B. Vhatkar, R. S. Takale, M. V. Gaikwad, P. K. Kamat, R. K. TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach |
title | TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach |
title_full | TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach |
title_fullStr | TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach |
title_full_unstemmed | TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach |
title_short | TiO(2) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach |
title_sort | tio(2) based nanostructured memristor for rram and neuromorphic applications: a simulation approach |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5271148/ https://www.ncbi.nlm.nih.gov/pubmed/28191426 http://dx.doi.org/10.1186/s40580-016-0076-8 |
work_keys_str_mv | AT dongaletd tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach AT patilpj tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach AT desaink tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach AT chougulepp tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach AT kumbharsm tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach AT waifalkarpp tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach AT patilpb tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach AT vhatkarrs tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach AT takalemv tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach AT gaikwadpk tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach AT kamatrk tio2basednanostructuredmemristorforrramandneuromorphicapplicationsasimulationapproach |