Cargando…
Inhibition of a NF-κB/Diap1 Pathway by PGRP-LF Is Required for Proper Apoptosis during Drosophila Development
NF-κB pathways are key signaling cascades of the Drosophila innate immune response. One of them, the Immune Deficiency (IMD) pathway, is under a very tight negative control. Although molecular brakes exist at each step of this signaling module from ligand availability to transcriptional regulation,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5279808/ https://www.ncbi.nlm.nih.gov/pubmed/28085885 http://dx.doi.org/10.1371/journal.pgen.1006569 |
_version_ | 1782502848706117632 |
---|---|
author | Tavignot, Raphael Chaduli, Delphine Djitte, Fatoumata Charroux, Bernard Royet, Julien |
author_facet | Tavignot, Raphael Chaduli, Delphine Djitte, Fatoumata Charroux, Bernard Royet, Julien |
author_sort | Tavignot, Raphael |
collection | PubMed |
description | NF-κB pathways are key signaling cascades of the Drosophila innate immune response. One of them, the Immune Deficiency (IMD) pathway, is under a very tight negative control. Although molecular brakes exist at each step of this signaling module from ligand availability to transcriptional regulation, it remains unknown whether repressors act in the same cells or tissues and if not, what is rationale behind this spatial specificity. We show here that the negative regulator of IMD pathway PGRP-LF is epressed in ectodermal derivatives. We provide evidence that, in the absence of any immune elicitor, PGRP-LF loss-of-function mutants, display a constitutive NF-κB/IMD activation specifically in ectodermal tissues leading to genitalia and tergite malformations. In agreement with previous data showing that proper development of these structures requires induction of apoptosis, we show that ectopic activation of NF-κB/IMD signaling leads to apoptosis inhibition in both genitalia and tergite primordia. We demonstrate that NF-κB/IMD signaling antagonizes apoptosis by up-regulating expression of the anti-apoptotic protein Diap1. Altogether these results show that, in the complete absence of infection, the negative regulation of NF-κB/IMD pathway by PGRP-LF is crucial to ensure proper induction of apoptosis and consequently normal fly development. These results highlight that IMD pathway regulation is controlled independently in different tissues, probably reflecting the different roles of this signaling cascade in both developmental and immune processes. |
format | Online Article Text |
id | pubmed-5279808 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52798082017-03-03 Inhibition of a NF-κB/Diap1 Pathway by PGRP-LF Is Required for Proper Apoptosis during Drosophila Development Tavignot, Raphael Chaduli, Delphine Djitte, Fatoumata Charroux, Bernard Royet, Julien PLoS Genet Research Article NF-κB pathways are key signaling cascades of the Drosophila innate immune response. One of them, the Immune Deficiency (IMD) pathway, is under a very tight negative control. Although molecular brakes exist at each step of this signaling module from ligand availability to transcriptional regulation, it remains unknown whether repressors act in the same cells or tissues and if not, what is rationale behind this spatial specificity. We show here that the negative regulator of IMD pathway PGRP-LF is epressed in ectodermal derivatives. We provide evidence that, in the absence of any immune elicitor, PGRP-LF loss-of-function mutants, display a constitutive NF-κB/IMD activation specifically in ectodermal tissues leading to genitalia and tergite malformations. In agreement with previous data showing that proper development of these structures requires induction of apoptosis, we show that ectopic activation of NF-κB/IMD signaling leads to apoptosis inhibition in both genitalia and tergite primordia. We demonstrate that NF-κB/IMD signaling antagonizes apoptosis by up-regulating expression of the anti-apoptotic protein Diap1. Altogether these results show that, in the complete absence of infection, the negative regulation of NF-κB/IMD pathway by PGRP-LF is crucial to ensure proper induction of apoptosis and consequently normal fly development. These results highlight that IMD pathway regulation is controlled independently in different tissues, probably reflecting the different roles of this signaling cascade in both developmental and immune processes. Public Library of Science 2017-01-13 /pmc/articles/PMC5279808/ /pubmed/28085885 http://dx.doi.org/10.1371/journal.pgen.1006569 Text en © 2017 Tavignot et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Tavignot, Raphael Chaduli, Delphine Djitte, Fatoumata Charroux, Bernard Royet, Julien Inhibition of a NF-κB/Diap1 Pathway by PGRP-LF Is Required for Proper Apoptosis during Drosophila Development |
title | Inhibition of a NF-κB/Diap1 Pathway by PGRP-LF Is Required for Proper Apoptosis during Drosophila Development |
title_full | Inhibition of a NF-κB/Diap1 Pathway by PGRP-LF Is Required for Proper Apoptosis during Drosophila Development |
title_fullStr | Inhibition of a NF-κB/Diap1 Pathway by PGRP-LF Is Required for Proper Apoptosis during Drosophila Development |
title_full_unstemmed | Inhibition of a NF-κB/Diap1 Pathway by PGRP-LF Is Required for Proper Apoptosis during Drosophila Development |
title_short | Inhibition of a NF-κB/Diap1 Pathway by PGRP-LF Is Required for Proper Apoptosis during Drosophila Development |
title_sort | inhibition of a nf-κb/diap1 pathway by pgrp-lf is required for proper apoptosis during drosophila development |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5279808/ https://www.ncbi.nlm.nih.gov/pubmed/28085885 http://dx.doi.org/10.1371/journal.pgen.1006569 |
work_keys_str_mv | AT tavignotraphael inhibitionofanfkbdiap1pathwaybypgrplfisrequiredforproperapoptosisduringdrosophiladevelopment AT chadulidelphine inhibitionofanfkbdiap1pathwaybypgrplfisrequiredforproperapoptosisduringdrosophiladevelopment AT djittefatoumata inhibitionofanfkbdiap1pathwaybypgrplfisrequiredforproperapoptosisduringdrosophiladevelopment AT charrouxbernard inhibitionofanfkbdiap1pathwaybypgrplfisrequiredforproperapoptosisduringdrosophiladevelopment AT royetjulien inhibitionofanfkbdiap1pathwaybypgrplfisrequiredforproperapoptosisduringdrosophiladevelopment |