Cargando…

Omega-3 and omega-6 DPA equally inhibit the sphingosylphosphorylcholine-induced Ca(2+)-sensitization of vascular smooth muscle contraction via inhibiting Rho-kinase activation and translocation

We previously reported that eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid (n-3 PUFA), effectively inhibits sphingosylphosphorylcholine (SPC)-induced Ca(2+)-sensitization of vascular smooth muscle (VSM) contraction which is a major cause of cardiovascular and cerebrovascular vaso...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ying, Zhang, Min, Lyu, Bochao, Kishi, Hiroko, Kobayashi, Sei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5294466/
https://www.ncbi.nlm.nih.gov/pubmed/28169288
http://dx.doi.org/10.1038/srep36368
Descripción
Sumario:We previously reported that eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid (n-3 PUFA), effectively inhibits sphingosylphosphorylcholine (SPC)-induced Ca(2+)-sensitization of vascular smooth muscle (VSM) contraction which is a major cause of cardiovascular and cerebrovascular vasospasm, and EPA is utilized clinically to prevent cerebrovascular vasospasm. In this study, we clearly demonstrate that docosapentaenoic acid (DPA), which exists in two forms as omega-3 (n-3) and omega-6 (n-6) PUFA, strongly inhibits SPC-induced contraction in VSM tissue and human coronary artery smooth muscle cells (CASMCs), with little effect on Ca(2+)-dependent contraction. Furthermore, n-3 and n-6 DPA inhibited the activation and translocation of Rho-kinase from cytosol to cell membrane. Additionally, SPC-induced phosphorylation of myosin light chain (MLC) was inhibited in n-3 and n-6 DPA pretreated smooth muscleVSM cells and tissues. In summary, we provide direct evidence that n-3 and n-6 DPA effectively equally inhibits SPC-induced contraction by inhibiting Rho-kinase activation and translocation to the cell membrane.