Cargando…

Error-Free Bypass of 7,8-dihydro-8-oxo-2′-deoxyguanosineby DNA Polymerase of Pseudomonas aeruginosa Phage PaP1

As one of the most common forms of oxidative DNA damage, 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxoG) generally leads to G:C to T:A mutagenesis. To study DNA replication encountering 8-oxoG by the sole DNA polymerase (Gp90) of Pseudomonas aeruginosa phage PaP1, we performed steady-state and pre-stea...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Shiling, Xue, Qizhen, Liu, Qin, Xiong, Mei, Wang, Wanneng, Zhang, Huidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295013/
https://www.ncbi.nlm.nih.gov/pubmed/28067844
http://dx.doi.org/10.3390/genes8010018
Descripción
Sumario:As one of the most common forms of oxidative DNA damage, 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxoG) generally leads to G:C to T:A mutagenesis. To study DNA replication encountering 8-oxoG by the sole DNA polymerase (Gp90) of Pseudomonas aeruginosa phage PaP1, we performed steady-state and pre-steady-state kinetic analyses of nucleotide incorporation opposite 8-oxoG by Gp90 D234A that lacks exonuclease activities on ssDNA and dsDNA substrates. Gp90 D234A could bypass 8-oxoG in an error-free manner, preferentially incorporate dCTP opposite 8-oxoG, and yield similar misincorporation frequency to unmodified G. Gp90 D234A could extend beyond C:8-oxoG or A:8-oxoG base pairs with the same efficiency. dCTP incorporation opposite G and dCTP or dATP incorporation opposite 8-oxoG showed fast burst phases. The burst of incorporation efficiency (k(pol)/K(d),(dNTP)) is decreased as dCTP:G > dCTP:8-oxoG > dATP:8-oxoG. The presence of 8-oxoG in DNA does not affect its binding to Gp90 D234A in a binary complex but it does affect it in a ternary complex with dNTP and Mg(2+), and dATP misincorporation opposite 8-oxoG further weakens the binding of Gp90 D234A to DNA. This study reveals Gp90 D234A can bypass 8-oxoG in an error-free manner, providing further understanding in DNA replication encountering oxidation lesion for P.aeruginosa phage PaP1.