Cargando…
Multiple rare genetic variants co‐segregating with familial IgA nephropathy all act within a single immune‐related network
BACKGROUND: IgA nephropathy (IgAN) is a common complex disease with a strong genetic involvement. We aimed to identify novel, rare, highly penetrant risk variants combining family‐based linkage analysis with whole‐exome sequencing (WES). METHODS: Linkage analysis of 16 kindreds of South Italian ance...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297991/ https://www.ncbi.nlm.nih.gov/pubmed/27730700 http://dx.doi.org/10.1111/joim.12565 |
_version_ | 1782505816749768704 |
---|---|
author | Cox, S. N. Pesce, F. El‐Sayed Moustafa, J.S. Sallustio, F. Serino, G. Kkoufou, C. Giampetruzzi, A. Ancona, N. Falchi, M. Schena, F. P. |
author_facet | Cox, S. N. Pesce, F. El‐Sayed Moustafa, J.S. Sallustio, F. Serino, G. Kkoufou, C. Giampetruzzi, A. Ancona, N. Falchi, M. Schena, F. P. |
author_sort | Cox, S. N. |
collection | PubMed |
description | BACKGROUND: IgA nephropathy (IgAN) is a common complex disease with a strong genetic involvement. We aimed to identify novel, rare, highly penetrant risk variants combining family‐based linkage analysis with whole‐exome sequencing (WES). METHODS: Linkage analysis of 16 kindreds of South Italian ancestry was performed using an ‘affected‐only’ strategy. Eight most informative trios composed of two familial cases and an intrafamilial control were selected for WES. High‐priority variants in linked regions were identified and validated using Sanger sequencing. Custom TaqMan assays were designed and carried out in the 16 kindreds and an independent cohort of 240 IgAN patients and 113 control subjects. RESULTS: We found suggestive linkage signals in 12 loci. After sequential filtering and validation of WES data, we identified 24 private or extremely rare (MAF <0.0003) linked variants segregating with IgAN status. These were present within coding or regulatory regions of 23 genes that merged into a common functional network. The genes were interconnected by AKT, CTNNB1, NFKB, MYC and UBC, key modulators of WNT/β‐catenin and PI3K/Akt pathways, which are implicated in IgAN pathogenesis. Overlaying publicly available expression data, genes/proteins with expression notably altered in IgAN were included in this immune‐related network. In particular, the network included the glucocorticoid receptor gene, NR3C1, which is the target of corticosteroid therapy routinely used in the treatment of IgAN. CONCLUSION: Our findings suggest that disease susceptibility could be influenced by multiple rare variants acting in a common network that could provide the starting point for the identification of potential drug targets for personalized therapy. |
format | Online Article Text |
id | pubmed-5297991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-52979912017-02-22 Multiple rare genetic variants co‐segregating with familial IgA nephropathy all act within a single immune‐related network Cox, S. N. Pesce, F. El‐Sayed Moustafa, J.S. Sallustio, F. Serino, G. Kkoufou, C. Giampetruzzi, A. Ancona, N. Falchi, M. Schena, F. P. J Intern Med Original Articles BACKGROUND: IgA nephropathy (IgAN) is a common complex disease with a strong genetic involvement. We aimed to identify novel, rare, highly penetrant risk variants combining family‐based linkage analysis with whole‐exome sequencing (WES). METHODS: Linkage analysis of 16 kindreds of South Italian ancestry was performed using an ‘affected‐only’ strategy. Eight most informative trios composed of two familial cases and an intrafamilial control were selected for WES. High‐priority variants in linked regions were identified and validated using Sanger sequencing. Custom TaqMan assays were designed and carried out in the 16 kindreds and an independent cohort of 240 IgAN patients and 113 control subjects. RESULTS: We found suggestive linkage signals in 12 loci. After sequential filtering and validation of WES data, we identified 24 private or extremely rare (MAF <0.0003) linked variants segregating with IgAN status. These were present within coding or regulatory regions of 23 genes that merged into a common functional network. The genes were interconnected by AKT, CTNNB1, NFKB, MYC and UBC, key modulators of WNT/β‐catenin and PI3K/Akt pathways, which are implicated in IgAN pathogenesis. Overlaying publicly available expression data, genes/proteins with expression notably altered in IgAN were included in this immune‐related network. In particular, the network included the glucocorticoid receptor gene, NR3C1, which is the target of corticosteroid therapy routinely used in the treatment of IgAN. CONCLUSION: Our findings suggest that disease susceptibility could be influenced by multiple rare variants acting in a common network that could provide the starting point for the identification of potential drug targets for personalized therapy. John Wiley and Sons Inc. 2016-10-11 2017-02 /pmc/articles/PMC5297991/ /pubmed/27730700 http://dx.doi.org/10.1111/joim.12565 Text en © 2016 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Cox, S. N. Pesce, F. El‐Sayed Moustafa, J.S. Sallustio, F. Serino, G. Kkoufou, C. Giampetruzzi, A. Ancona, N. Falchi, M. Schena, F. P. Multiple rare genetic variants co‐segregating with familial IgA nephropathy all act within a single immune‐related network |
title | Multiple rare genetic variants co‐segregating with familial IgA nephropathy all act within a single immune‐related network |
title_full | Multiple rare genetic variants co‐segregating with familial IgA nephropathy all act within a single immune‐related network |
title_fullStr | Multiple rare genetic variants co‐segregating with familial IgA nephropathy all act within a single immune‐related network |
title_full_unstemmed | Multiple rare genetic variants co‐segregating with familial IgA nephropathy all act within a single immune‐related network |
title_short | Multiple rare genetic variants co‐segregating with familial IgA nephropathy all act within a single immune‐related network |
title_sort | multiple rare genetic variants co‐segregating with familial iga nephropathy all act within a single immune‐related network |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297991/ https://www.ncbi.nlm.nih.gov/pubmed/27730700 http://dx.doi.org/10.1111/joim.12565 |
work_keys_str_mv | AT coxsn multipleraregeneticvariantscosegregatingwithfamilialiganephropathyallactwithinasingleimmunerelatednetwork AT pescef multipleraregeneticvariantscosegregatingwithfamilialiganephropathyallactwithinasingleimmunerelatednetwork AT elsayedmoustafajs multipleraregeneticvariantscosegregatingwithfamilialiganephropathyallactwithinasingleimmunerelatednetwork AT sallustiof multipleraregeneticvariantscosegregatingwithfamilialiganephropathyallactwithinasingleimmunerelatednetwork AT serinog multipleraregeneticvariantscosegregatingwithfamilialiganephropathyallactwithinasingleimmunerelatednetwork AT kkoufouc multipleraregeneticvariantscosegregatingwithfamilialiganephropathyallactwithinasingleimmunerelatednetwork AT giampetruzzia multipleraregeneticvariantscosegregatingwithfamilialiganephropathyallactwithinasingleimmunerelatednetwork AT anconan multipleraregeneticvariantscosegregatingwithfamilialiganephropathyallactwithinasingleimmunerelatednetwork AT falchim multipleraregeneticvariantscosegregatingwithfamilialiganephropathyallactwithinasingleimmunerelatednetwork AT schenafp multipleraregeneticvariantscosegregatingwithfamilialiganephropathyallactwithinasingleimmunerelatednetwork AT multipleraregeneticvariantscosegregatingwithfamilialiganephropathyallactwithinasingleimmunerelatednetwork |