Cargando…
Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die
The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global isc...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299717/ https://www.ncbi.nlm.nih.gov/pubmed/27935582 http://dx.doi.org/10.1038/cdd.2016.140 |
_version_ | 1782506079059443712 |
---|---|
author | Hwang, Jee-Yeon Gertner, Michael Pontarelli, Fabrizio Court-Vazquez, Brenda Bennett, Michael Vander Laan Ofengeim, Dimitry Zukin, Ruth Suzanne |
author_facet | Hwang, Jee-Yeon Gertner, Michael Pontarelli, Fabrizio Court-Vazquez, Brenda Bennett, Michael Vander Laan Ofengeim, Dimitry Zukin, Ruth Suzanne |
author_sort | Hwang, Jee-Yeon |
collection | PubMed |
description | The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global ischemia triggers a transient increase in mTOR phosphorylation at S2448, whereas decreasing p-mTOR and functional activity in selectively vulnerable hippocampal CA1 neurons. The decrease in mTOR coincides with an increase in biochemical markers of autophagy, pS317-ULK-1, pS14-Beclin-1, and LC3-II, a decrease in the cargo adaptor p62, and an increase in autophagic flux, a functional readout of autophagy. This is significant in that autophagy, a catabolic process downstream of mTORC1, promotes the formation of autophagosomes that capture and target cytoplasmic components to lysosomes. Inhibitors of the lysosomal (but not proteasomal) pathway rescued the ischemia-induced decrease in mTOR, consistent with degradation of mTOR via the autophagy/lysosomal pathway. Administration of the mTORC1 inhibitor rapamycin or acute knockdown of mTOR promotes autophagy and attenuates ischemia-induced neuronal death, indicating an inverse causal relation between mTOR, autophagy, and neuronal death. Our findings identify a novel and previously unappreciated mechanism by which mTOR self-regulates its own levels in hippocampal neurons in a clinically relevant model of ischemic stroke. |
format | Online Article Text |
id | pubmed-5299717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-52997172017-02-27 Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die Hwang, Jee-Yeon Gertner, Michael Pontarelli, Fabrizio Court-Vazquez, Brenda Bennett, Michael Vander Laan Ofengeim, Dimitry Zukin, Ruth Suzanne Cell Death Differ Original Paper The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global ischemia triggers a transient increase in mTOR phosphorylation at S2448, whereas decreasing p-mTOR and functional activity in selectively vulnerable hippocampal CA1 neurons. The decrease in mTOR coincides with an increase in biochemical markers of autophagy, pS317-ULK-1, pS14-Beclin-1, and LC3-II, a decrease in the cargo adaptor p62, and an increase in autophagic flux, a functional readout of autophagy. This is significant in that autophagy, a catabolic process downstream of mTORC1, promotes the formation of autophagosomes that capture and target cytoplasmic components to lysosomes. Inhibitors of the lysosomal (but not proteasomal) pathway rescued the ischemia-induced decrease in mTOR, consistent with degradation of mTOR via the autophagy/lysosomal pathway. Administration of the mTORC1 inhibitor rapamycin or acute knockdown of mTOR promotes autophagy and attenuates ischemia-induced neuronal death, indicating an inverse causal relation between mTOR, autophagy, and neuronal death. Our findings identify a novel and previously unappreciated mechanism by which mTOR self-regulates its own levels in hippocampal neurons in a clinically relevant model of ischemic stroke. Nature Publishing Group 2017-02 2016-12-09 /pmc/articles/PMC5299717/ /pubmed/27935582 http://dx.doi.org/10.1038/cdd.2016.140 Text en Copyright © 2017 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ |
spellingShingle | Original Paper Hwang, Jee-Yeon Gertner, Michael Pontarelli, Fabrizio Court-Vazquez, Brenda Bennett, Michael Vander Laan Ofengeim, Dimitry Zukin, Ruth Suzanne Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die |
title | Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die |
title_full | Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die |
title_fullStr | Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die |
title_full_unstemmed | Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die |
title_short | Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die |
title_sort | global ischemia induces lysosomal-mediated degradation of mtor and activation of autophagy in hippocampal neurons destined to die |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299717/ https://www.ncbi.nlm.nih.gov/pubmed/27935582 http://dx.doi.org/10.1038/cdd.2016.140 |
work_keys_str_mv | AT hwangjeeyeon globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie AT gertnermichael globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie AT pontarellifabrizio globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie AT courtvazquezbrenda globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie AT bennettmichaelvanderlaan globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie AT ofengeimdimitry globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie AT zukinruthsuzanne globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie |