Cargando…

Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die

The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global isc...

Descripción completa

Detalles Bibliográficos
Autores principales: Hwang, Jee-Yeon, Gertner, Michael, Pontarelli, Fabrizio, Court-Vazquez, Brenda, Bennett, Michael Vander Laan, Ofengeim, Dimitry, Zukin, Ruth Suzanne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299717/
https://www.ncbi.nlm.nih.gov/pubmed/27935582
http://dx.doi.org/10.1038/cdd.2016.140
_version_ 1782506079059443712
author Hwang, Jee-Yeon
Gertner, Michael
Pontarelli, Fabrizio
Court-Vazquez, Brenda
Bennett, Michael Vander Laan
Ofengeim, Dimitry
Zukin, Ruth Suzanne
author_facet Hwang, Jee-Yeon
Gertner, Michael
Pontarelli, Fabrizio
Court-Vazquez, Brenda
Bennett, Michael Vander Laan
Ofengeim, Dimitry
Zukin, Ruth Suzanne
author_sort Hwang, Jee-Yeon
collection PubMed
description The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global ischemia triggers a transient increase in mTOR phosphorylation at S2448, whereas decreasing p-mTOR and functional activity in selectively vulnerable hippocampal CA1 neurons. The decrease in mTOR coincides with an increase in biochemical markers of autophagy, pS317-ULK-1, pS14-Beclin-1, and LC3-II, a decrease in the cargo adaptor p62, and an increase in autophagic flux, a functional readout of autophagy. This is significant in that autophagy, a catabolic process downstream of mTORC1, promotes the formation of autophagosomes that capture and target cytoplasmic components to lysosomes. Inhibitors of the lysosomal (but not proteasomal) pathway rescued the ischemia-induced decrease in mTOR, consistent with degradation of mTOR via the autophagy/lysosomal pathway. Administration of the mTORC1 inhibitor rapamycin or acute knockdown of mTOR promotes autophagy and attenuates ischemia-induced neuronal death, indicating an inverse causal relation between mTOR, autophagy, and neuronal death. Our findings identify a novel and previously unappreciated mechanism by which mTOR self-regulates its own levels in hippocampal neurons in a clinically relevant model of ischemic stroke.
format Online
Article
Text
id pubmed-5299717
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-52997172017-02-27 Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die Hwang, Jee-Yeon Gertner, Michael Pontarelli, Fabrizio Court-Vazquez, Brenda Bennett, Michael Vander Laan Ofengeim, Dimitry Zukin, Ruth Suzanne Cell Death Differ Original Paper The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global ischemia triggers a transient increase in mTOR phosphorylation at S2448, whereas decreasing p-mTOR and functional activity in selectively vulnerable hippocampal CA1 neurons. The decrease in mTOR coincides with an increase in biochemical markers of autophagy, pS317-ULK-1, pS14-Beclin-1, and LC3-II, a decrease in the cargo adaptor p62, and an increase in autophagic flux, a functional readout of autophagy. This is significant in that autophagy, a catabolic process downstream of mTORC1, promotes the formation of autophagosomes that capture and target cytoplasmic components to lysosomes. Inhibitors of the lysosomal (but not proteasomal) pathway rescued the ischemia-induced decrease in mTOR, consistent with degradation of mTOR via the autophagy/lysosomal pathway. Administration of the mTORC1 inhibitor rapamycin or acute knockdown of mTOR promotes autophagy and attenuates ischemia-induced neuronal death, indicating an inverse causal relation between mTOR, autophagy, and neuronal death. Our findings identify a novel and previously unappreciated mechanism by which mTOR self-regulates its own levels in hippocampal neurons in a clinically relevant model of ischemic stroke. Nature Publishing Group 2017-02 2016-12-09 /pmc/articles/PMC5299717/ /pubmed/27935582 http://dx.doi.org/10.1038/cdd.2016.140 Text en Copyright © 2017 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/
spellingShingle Original Paper
Hwang, Jee-Yeon
Gertner, Michael
Pontarelli, Fabrizio
Court-Vazquez, Brenda
Bennett, Michael Vander Laan
Ofengeim, Dimitry
Zukin, Ruth Suzanne
Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die
title Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die
title_full Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die
title_fullStr Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die
title_full_unstemmed Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die
title_short Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die
title_sort global ischemia induces lysosomal-mediated degradation of mtor and activation of autophagy in hippocampal neurons destined to die
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299717/
https://www.ncbi.nlm.nih.gov/pubmed/27935582
http://dx.doi.org/10.1038/cdd.2016.140
work_keys_str_mv AT hwangjeeyeon globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie
AT gertnermichael globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie
AT pontarellifabrizio globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie
AT courtvazquezbrenda globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie
AT bennettmichaelvanderlaan globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie
AT ofengeimdimitry globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie
AT zukinruthsuzanne globalischemiainduceslysosomalmediateddegradationofmtorandactivationofautophagyinhippocampalneuronsdestinedtodie