Cargando…

A postsynthetically 2’-“clickable” uridine with arabino configuration and its application for fluorescent labeling and imaging of DNA

The arabino-configured analog of uridine with a propargyl group at the 2’-position was synthesized and incorporated into DNA by solid-phase chemistry. The fluorescence quantum yields of DNA strands that were postsynthetically modified by blue and green emitting cyanine-styryl dyes were improved due...

Descripción completa

Detalles Bibliográficos
Autores principales: Walter, Heidi-Kristin, Olshausen, Bettina, Schepers, Ute, Wagenknecht, Hans-Achim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302004/
https://www.ncbi.nlm.nih.gov/pubmed/28228854
http://dx.doi.org/10.3762/bjoc.13.16
Descripción
Sumario:The arabino-configured analog of uridine with a propargyl group at the 2’-position was synthesized and incorporated into DNA by solid-phase chemistry. The fluorescence quantum yields of DNA strands that were postsynthetically modified by blue and green emitting cyanine-styryl dyes were improved due to the arabino-configured anchor. These oligonucleotides were used as energy transfer donors in hybrids with oligonucleotides modified with acceptor dyes that emit in the yellow-red range. These combinations give energy transfer pairs with blue–yellow, blue–red and green–red emission color changes. All combinations of arabino- and ribo-configured donor strands with arabino- and ribo-configured acceptor strands were evaluated. This array of doubly modified hybrids was screened by their emission color contrast and fluorescence quantum yield. Especially mixed combinations, that means donor dyes with arabino-configured anchor with acceptor dyes with ribo-configured anchor, and vice versa, showed significantly improved fluorescence properties. Those were successfully applied for fluorescent imaging of DNA after transport into living cells.