Cargando…
Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy
Troponin, a contractile protein of the thin filament of striated muscle, consists of three subunits: troponin C (TnC), troponin T (TnT), and troponin I (TnI). Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. The physiological effect of cTnI, as an inhibitory subunit...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Global Science and Technology Forum
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302009/ https://www.ncbi.nlm.nih.gov/pubmed/28239629 http://dx.doi.org/10.7603/s40782-014-0017-6 |
_version_ | 1782506463798755328 |
---|---|
author | Xu, Yang Tian, Jie Huang, Xupei |
author_facet | Xu, Yang Tian, Jie Huang, Xupei |
author_sort | Xu, Yang |
collection | PubMed |
description | Troponin, a contractile protein of the thin filament of striated muscle, consists of three subunits: troponin C (TnC), troponin T (TnT), and troponin I (TnI). Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. The physiological effect of cTnI, as an inhibitory subunit of troponin complex, is to prevent the interaction between myosin heavy chain heads and actins, i.e. the cross-bridge formation, and to ensure a proper relaxation of cardiac myofilaments. In pathological conditions, the deficiency of cTnI or mutations in cTnI especially in the C-terminus of cTnI is associated with diastolic dysfunction caused by myofibril hypersensitivity to Ca(2+). Our laboratory has generated cTnI knockout mouse model to investigate the cellular and molecular function of cTnI and created cTnI mutant disease mouse models to explore the pathophysiology caused by cTnI mutations in the heart. Here, we present our recent studies on physiological function of cTnI in the heart and the pathological consequences caused by the cTnI mutations in the diseased heart using the transgenic mouse models. The mechanisms underlying diastolic dysfunction and heart failure caused by cTnI mutations are explored in cell-based assays and in transgenic animal models. These studies provide us with useful information in searching for therapeutic strategies and target-oriented medication for the treatment of diastolic dysfunction and heart failure. |
format | Online Article Text |
id | pubmed-5302009 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Global Science and Technology Forum |
record_format | MEDLINE/PubMed |
spelling | pubmed-53020092017-02-22 Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy Xu, Yang Tian, Jie Huang, Xupei GSTF J Adv Med Res Original Paper Troponin, a contractile protein of the thin filament of striated muscle, consists of three subunits: troponin C (TnC), troponin T (TnT), and troponin I (TnI). Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. The physiological effect of cTnI, as an inhibitory subunit of troponin complex, is to prevent the interaction between myosin heavy chain heads and actins, i.e. the cross-bridge formation, and to ensure a proper relaxation of cardiac myofilaments. In pathological conditions, the deficiency of cTnI or mutations in cTnI especially in the C-terminus of cTnI is associated with diastolic dysfunction caused by myofibril hypersensitivity to Ca(2+). Our laboratory has generated cTnI knockout mouse model to investigate the cellular and molecular function of cTnI and created cTnI mutant disease mouse models to explore the pathophysiology caused by cTnI mutations in the heart. Here, we present our recent studies on physiological function of cTnI in the heart and the pathological consequences caused by the cTnI mutations in the diseased heart using the transgenic mouse models. The mechanisms underlying diastolic dysfunction and heart failure caused by cTnI mutations are explored in cell-based assays and in transgenic animal models. These studies provide us with useful information in searching for therapeutic strategies and target-oriented medication for the treatment of diastolic dysfunction and heart failure. Global Science and Technology Forum 2015-07-09 2014 /pmc/articles/PMC5302009/ /pubmed/28239629 http://dx.doi.org/10.7603/s40782-014-0017-6 Text en © Global Science and Technology Forum 2014 https://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Original Paper Xu, Yang Tian, Jie Huang, Xupei Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy |
title | Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy |
title_full | Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy |
title_fullStr | Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy |
title_full_unstemmed | Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy |
title_short | Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy |
title_sort | troponin mutation caused diastolic dysfunction and experimental treatment in transgenic mice with cardiomyopathy |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302009/ https://www.ncbi.nlm.nih.gov/pubmed/28239629 http://dx.doi.org/10.7603/s40782-014-0017-6 |
work_keys_str_mv | AT xuyang troponinmutationcauseddiastolicdysfunctionandexperimentaltreatmentintransgenicmicewithcardiomyopathy AT tianjie troponinmutationcauseddiastolicdysfunctionandexperimentaltreatmentintransgenicmicewithcardiomyopathy AT huangxupei troponinmutationcauseddiastolicdysfunctionandexperimentaltreatmentintransgenicmicewithcardiomyopathy |