Cargando…
CMOS-Compatible Fabrication for Photonic Crystal-Based Nanofluidic Structure
Photonic crystal (PC)-based devices have been widely used since 1990s, while PC has just stepped into the research area of nanofluidic. In this paper, photonic crystal had been used as a complementary metal oxide semiconductors (CMOS) compatible part to create a nanofluidic structure. A nanofluidic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307410/ https://www.ncbi.nlm.nih.gov/pubmed/28209025 http://dx.doi.org/10.1186/s11671-017-1849-7 |
Sumario: | Photonic crystal (PC)-based devices have been widely used since 1990s, while PC has just stepped into the research area of nanofluidic. In this paper, photonic crystal had been used as a complementary metal oxide semiconductors (CMOS) compatible part to create a nanofluidic structure. A nanofluidic structure prototype had been fabricated with CMOS-compatible techniques. The nanofluidic channels were sealed by direct bonding polydimethylsiloxane (PDMS) and the periodic gratings on photonic crystal structure. The PC was fabricated on a 4-in. Si wafer with Si(3)N(4) as the guided mode layer and SiO(2) film as substrate layer. The higher order mode resonance wavelength of PC-based nanofluidic structure had been selected, which can confine the enhanced electrical field located inside the nanochannel area. A design flow chart was used to guide the fabrication process. By optimizing the fabrication device parameters, the periodic grating of PC-based nanofluidic structure had a high-fidelity profile with fill factor at 0.5. The enhanced electric field was optimized and located within the channel area, and it can be used for PC-based nanofluidic applications with high performance. |
---|