Cargando…

Deficient for endoplasmic reticulum calcium sensors Stim1 and Stim2 affects aberrant antibody affinity maturation in B cells

Antigen specific B cells undergo a process termed affinity maturation in the germinal centers of secondary lymphoid organs where B cells with high affinity receptors are selected to mature into antibody-producing cells or to the memory B cell pool. It is known that B cell antigen receptor (BCR) sign...

Descripción completa

Detalles Bibliográficos
Autores principales: Mao, Xuhua, Zhang, Jianfeng, Han, Yue, Luan, Chao, Hu, Yu, Hao, Zhimin, Chen, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5308623/
https://www.ncbi.nlm.nih.gov/pubmed/27572320
http://dx.doi.org/10.18632/oncotarget.11659
Descripción
Sumario:Antigen specific B cells undergo a process termed affinity maturation in the germinal centers of secondary lymphoid organs where B cells with high affinity receptors are selected to mature into antibody-producing cells or to the memory B cell pool. It is known that B cell antigen receptor (BCR) signaling plays pivotal role in this selection process. Calcium influx is an essential component of BCR signaling. The current report is to determine the effect of calcium influx on antibody affinity maturation. In our studies, mice deficient for both endoplasmic reticulum calciumsensor Stim1 and Stim2 was immunized with T-cell dependent and independent antigens. Antibody affinity was measured by ELISA. We demonstrated that Stim1 &Stim2 deficient B cells exhibit accelerated pace of affinity maturation compared to wild type controls while the overall antibody production was not dramatically impaired to T-independent antigen immunization. In conclusion, calcium influx plays an important role in antibody affinity maturation in humoral immune responses. The knowledge can be used in manipulate humoral immune response for the design of effective vaccines.