Cargando…
Prediction of the effect of formulation on the toxicity of chemicals
Two approaches for the prediction of which of two vehicles will result in lower toxicity for anticancer agents are presented. Machine-learning models are developed using decision tree, random forest and partial least squares methodologies and statistical evidence is presented to demonstrate that the...
Autores principales: | Mistry, Pritesh, Neagu, Daniel, Sanchez-Ruiz, Antonio, Trundle, Paul R., Vessey, Jonathan D., Gosling, John Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310521/ https://www.ncbi.nlm.nih.gov/pubmed/28261444 http://dx.doi.org/10.1039/c6tx00303f |
Ejemplares similares
-
Novel in vitro and mathematical models for the prediction of chemical toxicity
por: Williams, Dominic P., et al.
Publicado: (2013) -
Improving the prediction of organism-level toxicity through integration of chemical, protein target and cytotoxicity qHTS data
por: Allen, Chad H. G., et al.
Publicado: (2016) -
In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
por: Yang, Hongbin, et al.
Publicado: (2018) -
Corrigendum: In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
por: Yang, Hongbin, et al.
Publicado: (2018) -
Predicting Chemical Toxicity Effects Based on Chemical-Chemical Interactions
por: Chen, Lei, et al.
Publicado: (2013)