Cargando…

Recurrent RNA motifs as scaffolds for genetically encodable small molecule biosensors

Allosteric RNA devices are increasingly viewed as important tools capable of monitoring enzyme evolution, optimizing engineered metabolic pathways, facilitating gene discovery and regulators of nucleic acid-based therapeutics. A key bottleneck in the development of these platforms is the availabilit...

Descripción completa

Detalles Bibliográficos
Autores principales: Porter, Ely B., Polaski, Jacob T., Morck, Makenna M., Batey, Robert T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310984/
https://www.ncbi.nlm.nih.gov/pubmed/28092358
http://dx.doi.org/10.1038/nchembio.2278
Descripción
Sumario:Allosteric RNA devices are increasingly viewed as important tools capable of monitoring enzyme evolution, optimizing engineered metabolic pathways, facilitating gene discovery and regulators of nucleic acid-based therapeutics. A key bottleneck in the development of these platforms is the availability of small molecule binding RNA aptamers that robustly function in the cellular environment. While aptamers can be raised against nearly any desired target by in vitro selection, many cannot be easily integrated into devices or do not reliably function in a cellular context. Here, we describe a new approach using secondary and tertiary structural scaffolds derived from biologically active riboswitches and small ribozymes. Applied to neurotransmitter precursors 5-hydroxytryptophan and 3,4-dihydroxyphenylalanine, this approach yields easily identifiable and characterizable aptamers predisposed for coupling to readout domains to engineer nucleic acid sensory devices that function in vitro and in the cellular context.