Cargando…

Molecular basis for the autonomous promotion of cell proliferation by angiogenin

Canonical growth factors act indirectly via receptor-mediated signal transduction pathways. Here, we report on an autonomous pathway in which a growth factor is internalized, has its localization regulated by phosphorylation, and ultimately uses intrinsic catalytic activity to effect epigenetic chan...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoang, Trish T., Raines, Ronald T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314776/
https://www.ncbi.nlm.nih.gov/pubmed/27915233
http://dx.doi.org/10.1093/nar/gkw1192
Descripción
Sumario:Canonical growth factors act indirectly via receptor-mediated signal transduction pathways. Here, we report on an autonomous pathway in which a growth factor is internalized, has its localization regulated by phosphorylation, and ultimately uses intrinsic catalytic activity to effect epigenetic change. Angiogenin (ANG), a secreted vertebrate ribonuclease, is known to promote cell proliferation, leading to neovascularization as well as neuroprotection in mammals. Upon entering cells, ANG encounters the cytosolic ribonuclease inhibitor protein, which binds with femtomolar affinity. We find that protein kinase C and cyclin-dependent kinase phosphorylate ANG, enabling ANG to evade its inhibitor and enter the nucleus. After migrating to the nucleolus, ANG cleaves promoter-associated RNA, which prevents the recruitment of the nucleolar remodeling complex to the ribosomal DNA promoter. The ensuing derepression of rDNA transcription promotes cell proliferation. The biochemical basis for this unprecedented mechanism of signal transduction suggests new modalities for the treatment of cancers and neurological disorders.