Cargando…
Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism
A precise and rapid adjustment of fluxes through metabolic pathways is crucial for organisms to prevail in changing environmental conditions. Based on this reasoning, many guiding principles that govern the evolution of metabolic networks and their regulation have been uncovered. To this end, method...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315294/ https://www.ncbi.nlm.nih.gov/pubmed/28212377 http://dx.doi.org/10.1371/journal.pcbi.1005371 |
_version_ | 1782508666107199488 |
---|---|
author | Ewald, Jan Bartl, Martin Dandekar, Thomas Kaleta, Christoph |
author_facet | Ewald, Jan Bartl, Martin Dandekar, Thomas Kaleta, Christoph |
author_sort | Ewald, Jan |
collection | PubMed |
description | A precise and rapid adjustment of fluxes through metabolic pathways is crucial for organisms to prevail in changing environmental conditions. Based on this reasoning, many guiding principles that govern the evolution of metabolic networks and their regulation have been uncovered. To this end, methods from dynamic optimization are ideally suited since they allow to uncover optimality principles behind the regulation of metabolic networks. We used dynamic optimization to investigate the influence of toxic intermediates in connection with the efficiency of enzymes on the regulation of a linear metabolic pathway. Our results predict that transcriptional regulation favors the control of highly efficient enzymes with less toxic upstream intermediates to reduce accumulation of toxic downstream intermediates. We show that the derived optimality principles hold by the analysis of the interplay between intermediate toxicity and pathway regulation in the metabolic pathways of over 5000 sequenced prokaryotes. Moreover, using the lipopolysaccharide biosynthesis in Escherichia coli as an example, we show how knowledge about the relation of regulation, kinetic efficiency and intermediate toxicity can be used to identify drug targets, which control endogenous toxic metabolites and prevent microbial growth. Beyond prokaryotes, we discuss the potential of our findings for the development of antifungal drugs. |
format | Online Article Text |
id | pubmed-5315294 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53152942017-03-03 Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism Ewald, Jan Bartl, Martin Dandekar, Thomas Kaleta, Christoph PLoS Comput Biol Research Article A precise and rapid adjustment of fluxes through metabolic pathways is crucial for organisms to prevail in changing environmental conditions. Based on this reasoning, many guiding principles that govern the evolution of metabolic networks and their regulation have been uncovered. To this end, methods from dynamic optimization are ideally suited since they allow to uncover optimality principles behind the regulation of metabolic networks. We used dynamic optimization to investigate the influence of toxic intermediates in connection with the efficiency of enzymes on the regulation of a linear metabolic pathway. Our results predict that transcriptional regulation favors the control of highly efficient enzymes with less toxic upstream intermediates to reduce accumulation of toxic downstream intermediates. We show that the derived optimality principles hold by the analysis of the interplay between intermediate toxicity and pathway regulation in the metabolic pathways of over 5000 sequenced prokaryotes. Moreover, using the lipopolysaccharide biosynthesis in Escherichia coli as an example, we show how knowledge about the relation of regulation, kinetic efficiency and intermediate toxicity can be used to identify drug targets, which control endogenous toxic metabolites and prevent microbial growth. Beyond prokaryotes, we discuss the potential of our findings for the development of antifungal drugs. Public Library of Science 2017-02-17 /pmc/articles/PMC5315294/ /pubmed/28212377 http://dx.doi.org/10.1371/journal.pcbi.1005371 Text en © 2017 Ewald et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ewald, Jan Bartl, Martin Dandekar, Thomas Kaleta, Christoph Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism |
title | Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism |
title_full | Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism |
title_fullStr | Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism |
title_full_unstemmed | Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism |
title_short | Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism |
title_sort | optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315294/ https://www.ncbi.nlm.nih.gov/pubmed/28212377 http://dx.doi.org/10.1371/journal.pcbi.1005371 |
work_keys_str_mv | AT ewaldjan optimalityprinciplesrevealacomplexinterplayofintermediatetoxicityandkineticefficiencyintheregulationofprokaryoticmetabolism AT bartlmartin optimalityprinciplesrevealacomplexinterplayofintermediatetoxicityandkineticefficiencyintheregulationofprokaryoticmetabolism AT dandekarthomas optimalityprinciplesrevealacomplexinterplayofintermediatetoxicityandkineticefficiencyintheregulationofprokaryoticmetabolism AT kaletachristoph optimalityprinciplesrevealacomplexinterplayofintermediatetoxicityandkineticefficiencyintheregulationofprokaryoticmetabolism |