Cargando…
Mechanistic Investigation on ROS Resistance of Phosphorothioated DNA
Phosphorothioated DNA (PT-DNA) exhibits a mild anti-oxidant property both in vivo and in vitro. It was found that 8-OHdG and ROS levels were significantly lower in dnd+ (i.e. S(+)) E. coli., compared to a dnd− (i.e. S(−)) strain. Furthermore, different from traditional antioxidants, phosphorothioate...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316992/ https://www.ncbi.nlm.nih.gov/pubmed/28216673 http://dx.doi.org/10.1038/srep42823 |
Sumario: | Phosphorothioated DNA (PT-DNA) exhibits a mild anti-oxidant property both in vivo and in vitro. It was found that 8-OHdG and ROS levels were significantly lower in dnd+ (i.e. S(+)) E. coli., compared to a dnd− (i.e. S(−)) strain. Furthermore, different from traditional antioxidants, phosphorothioate compound presents an unexpectedly high capacity to quench hydroxyl radical. Oxidative product analysis by liquid chromatography-mass spectrometry and quantum mechanistic computation supported its unique anti-oxidant characteristic of the hydroxyl selectivity: phosphorothioate donates an electron to either hydroxyl radical or guanine radical derived from hydroxyl radical, leading to a PS(•) radical; a complex of PS(•) radical and OH(−) (i.e. the reductive product of hydroxyl radical) releases a highly reductive HS(•) radical, which scavenges more equivalents of oxidants in the way to high-covalent sulphur compounds such as sulphur, sulphite and sulphate. The PS-PO conversion (PS and PO denote phosphorus-sulphur and phosphorus-oxygen compounds, respectively) made a switch of extremely oxidative OH(•) to highly reductive HS(•) species, endowing PT-DNA with the observed high capacity in hydroxyl-radical neutralization. This plausible mechanism provides partial rationale as to why bacteria develop the resource-demanding PT modification on guanine-neighboring phosphates in genome. |
---|