Cargando…

Performance of Firth-and logF-type penalized methods in risk prediction for small or sparse binary data

BACKGROUND: When developing risk models for binary data with small or sparse data sets, the standard maximum likelihood estimation (MLE) based logistic regression faces several problems including biased or infinite estimate of the regression coefficient and frequent convergence failure of the likeli...

Descripción completa

Detalles Bibliográficos
Autores principales: Rahman, M. Shafiqur, Sultana, Mahbuba
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324225/
https://www.ncbi.nlm.nih.gov/pubmed/28231767
http://dx.doi.org/10.1186/s12874-017-0313-9