Cargando…
Performance of Firth-and logF-type penalized methods in risk prediction for small or sparse binary data
BACKGROUND: When developing risk models for binary data with small or sparse data sets, the standard maximum likelihood estimation (MLE) based logistic regression faces several problems including biased or infinite estimate of the regression coefficient and frequent convergence failure of the likeli...
Autores principales: | Rahman, M. Shafiqur, Sultana, Mahbuba |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324225/ https://www.ncbi.nlm.nih.gov/pubmed/28231767 http://dx.doi.org/10.1186/s12874-017-0313-9 |
Ejemplares similares
-
Information criteria for Firth's penalized partial likelihood approach in Cox regression models
por: Nagashima, Kengo, et al.
Publicado: (2017) -
Notter and Firth's Hygiene
Publicado: (1940) -
John Lacy Firth
Publicado: (1943) -
Editorial Comment on Firth et al. (2019)
por: Kop, Willem J., et al.
Publicado: (2020) -
Firth logistic regression for rare variant association tests
por: Wang, Xuefeng
Publicado: (2014)