Cargando…

Neddylated Cullin 3 is required for vascular endothelial‐cadherin‐mediated endothelial barrier function

Vascular endothelial (VE)‐cadherin, a major endothelial adhesion molecule, regulates vascular permeability, and increased vascular permeability has been observed in several cancers. The aim of this study was to elucidate the role of the NEDD8‐Cullin E3 ligase, in maintaining barrier permeability. To...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakaue, Tomohisa, Fujisaki, Ayako, Nakayama, Hironao, Maekawa, Masashi, Hiyoshi, Hiromi, Kubota, Eiji, Joh, Takashi, Izutani, Hironori, Higashiyama, Shigeki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5329144/
https://www.ncbi.nlm.nih.gov/pubmed/27987332
http://dx.doi.org/10.1111/cas.13133
Descripción
Sumario:Vascular endothelial (VE)‐cadherin, a major endothelial adhesion molecule, regulates vascular permeability, and increased vascular permeability has been observed in several cancers. The aim of this study was to elucidate the role of the NEDD8‐Cullin E3 ligase, in maintaining barrier permeability. To this end, we investigated the effects of the inhibition of Cullin E3 ligases, by using inhibitors and knockdown techniques in HUVECs. Furthermore, we analyzed the mRNA and protein levels of the ligases by quantitative RT‐PCR and Western blotting, respectively. The results revealed that NEDD8‐conjugated Cullin 3 is required for VE‐cadherin‐mediated endothelial barrier functions. Treatment of HUVECs with MLN4924, a chemical inhibitor of the NEDD8‐activating enzyme, led to high vascular permeability due to impaired cell–cell contact. Similar results were obtained when HUVECs were treated with siRNA directed against Cullin 3, one of the target substrates of NEDD8. Immunocytochemical staining showed that both treatments equally depleted VE‐cadherin protein localized at the cell–cell borders. However, quantitative RT‐PCR showed that there was no significant difference in the VE‐cadherin mRNA levels between the treatment and control groups. In addition, cycloheximide chase assay revealed that the half‐life of VE‐cadherin protein was dramatically reduced by Cullin 3 depletion. Together, these findings suggest that neddylated Cullin 3 plays a crucial role in endothelial cell barrier function by regulating VE‐cadherin.