Cargando…
Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1
VEGF and VEGFR antibodies have been used as a therapeutic strategy to inhibit angiogenesis in many diseases; however, frequent and repeated administration of these antibodies to patients induces immunogenicity. In previous studies, we demonstrated that aggretin, a heterodimeric snake venom C-type le...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333632/ https://www.ncbi.nlm.nih.gov/pubmed/28252668 http://dx.doi.org/10.1038/srep43612 |
Sumario: | VEGF and VEGFR antibodies have been used as a therapeutic strategy to inhibit angiogenesis in many diseases; however, frequent and repeated administration of these antibodies to patients induces immunogenicity. In previous studies, we demonstrated that aggretin, a heterodimeric snake venom C-type lectin, exhibits pro-angiogenic activities via integrin α2β1 ligation. We hypothesised that small-mass aggretin fragments may bind integrin α2β1 and act as antagonists of angiogenesis. In this study, the anti-angiogenic efficacy of a synthesised aggretin α-chain C-terminus (AACT, residue 106–136) was evaluated in both in vitro and in vivo angiogenesis models. The AACT demonstrated inhibitory effects on collagen-induced platelet aggregation and HUVEC adhesion to immobilised collagen. These results indicated that AACT may block integrin α2β1−collagen interaction. AACT also inhibited HUVEC migration and tube formation. Aortic ring sprouting and Matrigel implant models demonstrated that AACT markedly inhibited VEGF-induced neovascularisation. In addition, induction of FAK/PI3K/ERK1/2 tyrosine phosphorylation and talin 1/2 associated with integrin β1 which are induced by VEGF were blocked by AACT. Similarly, tyrosine phosphorylation of VEFGR2 and ERK1/2 induced by VEGF was diminished in integrin α2-silenced endothelial cells. Our results demonstrate that AACT is a potential therapeutic candidate for angiogenesis related-diseases via integrin α2β1 blockade. |
---|