Cargando…
Sample size for detecting differentially expressed genes in microarray experiments
BACKGROUND: Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease err...
Autores principales: | Wei, Caimiao, Li, Jiangning, Bumgarner, Roger E |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC533874/ https://www.ncbi.nlm.nih.gov/pubmed/15533245 http://dx.doi.org/10.1186/1471-2164-5-87 |
Ejemplares similares
-
From co-expression to co-regulation: how many microarray experiments do we need?
por: Yeung, Ka Yee, et al.
Publicado: (2004) -
A Regression-Based Differential Expression Detection Algorithm for Microarray Studies with Ultra-Low Sample Size
por: Vasiliu, Daniel, et al.
Publicado: (2015) -
Multiclass classification of microarray data with repeated measurements: application to cancer
por: Yeung, Ka Yee, et al.
Publicado: (2003) -
Correction: Multiclass classification of microarray data with repeated measurements: application to cancer
por: Yeung, Ka Yee, et al.
Publicado: (2005) -
A simple method for assessing sample sizes in microarray experiments
por: Tibshirani, Robert
Publicado: (2006)