Cargando…

Crystal structures of highly simplified BPTIs provide insights into hydration-driven increase of unfolding enthalpy

We report a thermodynamic and structural analysis of six extensively simplified bovine pancreatic trypsin inhibitor (BPTI) variants containing 19–24 alanines out of 58 residues. Differential scanning calorimetry indicated a two-state thermal unfolding, typical of a native protein with densely packed...

Descripción completa

Detalles Bibliográficos
Autores principales: Islam, Mohammad Monirul, Yohda, Masafumi, Kidokoro, Shun-ichi, Kuroda, Yutaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339861/
https://www.ncbi.nlm.nih.gov/pubmed/28266637
http://dx.doi.org/10.1038/srep41205
Descripción
Sumario:We report a thermodynamic and structural analysis of six extensively simplified bovine pancreatic trypsin inhibitor (BPTI) variants containing 19–24 alanines out of 58 residues. Differential scanning calorimetry indicated a two-state thermal unfolding, typical of a native protein with densely packed interior. Surprisingly, increasing the number of alanines induced enthalpy stabilization, which was however over-compensated by entropy destabilization. X-ray crystallography indicated that the alanine substitutions caused the recruitment of novel water molecules facilitating the formation of protein–water hydrogen bonds and improving the hydration shells around the alanine’s methyl groups, both of which presumably contributed to enthalpy stabilization. There was a strong correlation between the number of water molecules and the thermodynamic parameters. Overall, our results demonstrate that, in contrast to our initial expectation, a protein sequence in which over 40% of the residues are alanines can retain a densely packed structure and undergo thermal denaturation with a large enthalpy change, mainly contributed by hydration.