Cargando…

Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit

Metabolic engineering of microorganisms to produce desirable products on an industrial scale can result in unbalanced cellular metabolic networks that reduce productivity and yield. Metabolic fluxes can be rebalanced using dynamic pathway regulation, but few broadly applicable tools are available to...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Apoorv, Brockman Reizman, Irene M., Reisch, Christopher R., Prather, Kristala L. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340623/
https://www.ncbi.nlm.nih.gov/pubmed/28191902
http://dx.doi.org/10.1038/nbt.3796
Descripción
Sumario:Metabolic engineering of microorganisms to produce desirable products on an industrial scale can result in unbalanced cellular metabolic networks that reduce productivity and yield. Metabolic fluxes can be rebalanced using dynamic pathway regulation, but few broadly applicable tools are available to achieve this. We present a pathway-independent genetic control module that can be used to dynamically regulate the expression of target genes. We applied our module to identify the optimal point to redirect glycolytic flux into heterologous engineered pathways in Escherichia coli, resulting in 5.5-fold increased titres of myo-inositol and titers of glucaric acid that improved from unmeasurable quantities to >0.8 g/L. Scaled-up production in benchtop bioreactors resulted in almost 10-fold and 5-fold increases in titers of myo-inositol and glucaric acid. We also used our module to control flux into aromatic amino acid biosynthesis to increase titers of shikimate in E. coli from unmeasurable quantities to >100 mg/L.