Cargando…

Regulating retrotransposon activity through the use of alternative transcription start sites

Retrotransposons, the ancestors of retroviruses, have the potential for gene disruption and genomic takeover if not kept in check. Paradoxically, although host cells repress these elements by multiple mechanisms, they are transcribed and are even activated under stress conditions. Here, we describe...

Descripción completa

Detalles Bibliográficos
Autores principales: Persson, Jenna, Steglich, Babett, Smialowska, Agata, Boyd, Mette, Bornholdt, Jette, Andersson, Robin, Schurra, Catherine, Arcangioli, Benoit, Sandelin, Albin, Nielsen, Olaf, Ekwall, Karl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341516/
https://www.ncbi.nlm.nih.gov/pubmed/26902262
http://dx.doi.org/10.15252/embr.201541866
_version_ 1782513002529947648
author Persson, Jenna
Steglich, Babett
Smialowska, Agata
Boyd, Mette
Bornholdt, Jette
Andersson, Robin
Schurra, Catherine
Arcangioli, Benoit
Sandelin, Albin
Nielsen, Olaf
Ekwall, Karl
author_facet Persson, Jenna
Steglich, Babett
Smialowska, Agata
Boyd, Mette
Bornholdt, Jette
Andersson, Robin
Schurra, Catherine
Arcangioli, Benoit
Sandelin, Albin
Nielsen, Olaf
Ekwall, Karl
author_sort Persson, Jenna
collection PubMed
description Retrotransposons, the ancestors of retroviruses, have the potential for gene disruption and genomic takeover if not kept in check. Paradoxically, although host cells repress these elements by multiple mechanisms, they are transcribed and are even activated under stress conditions. Here, we describe a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon‐flanking long terminal repeat (LTR) elements. This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled retrotransposon transcription from a nonproductive TSS allows for rapid stress‐induced activation, while preventing uncontrolled transposon activity in the genome.
format Online
Article
Text
id pubmed-5341516
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-53415162017-03-10 Regulating retrotransposon activity through the use of alternative transcription start sites Persson, Jenna Steglich, Babett Smialowska, Agata Boyd, Mette Bornholdt, Jette Andersson, Robin Schurra, Catherine Arcangioli, Benoit Sandelin, Albin Nielsen, Olaf Ekwall, Karl EMBO Rep Articles Retrotransposons, the ancestors of retroviruses, have the potential for gene disruption and genomic takeover if not kept in check. Paradoxically, although host cells repress these elements by multiple mechanisms, they are transcribed and are even activated under stress conditions. Here, we describe a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon‐flanking long terminal repeat (LTR) elements. This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled retrotransposon transcription from a nonproductive TSS allows for rapid stress‐induced activation, while preventing uncontrolled transposon activity in the genome. John Wiley and Sons Inc. 2016-02-22 2016-05 /pmc/articles/PMC5341516/ /pubmed/26902262 http://dx.doi.org/10.15252/embr.201541866 Text en © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Articles
Persson, Jenna
Steglich, Babett
Smialowska, Agata
Boyd, Mette
Bornholdt, Jette
Andersson, Robin
Schurra, Catherine
Arcangioli, Benoit
Sandelin, Albin
Nielsen, Olaf
Ekwall, Karl
Regulating retrotransposon activity through the use of alternative transcription start sites
title Regulating retrotransposon activity through the use of alternative transcription start sites
title_full Regulating retrotransposon activity through the use of alternative transcription start sites
title_fullStr Regulating retrotransposon activity through the use of alternative transcription start sites
title_full_unstemmed Regulating retrotransposon activity through the use of alternative transcription start sites
title_short Regulating retrotransposon activity through the use of alternative transcription start sites
title_sort regulating retrotransposon activity through the use of alternative transcription start sites
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341516/
https://www.ncbi.nlm.nih.gov/pubmed/26902262
http://dx.doi.org/10.15252/embr.201541866
work_keys_str_mv AT perssonjenna regulatingretrotransposonactivitythroughtheuseofalternativetranscriptionstartsites
AT steglichbabett regulatingretrotransposonactivitythroughtheuseofalternativetranscriptionstartsites
AT smialowskaagata regulatingretrotransposonactivitythroughtheuseofalternativetranscriptionstartsites
AT boydmette regulatingretrotransposonactivitythroughtheuseofalternativetranscriptionstartsites
AT bornholdtjette regulatingretrotransposonactivitythroughtheuseofalternativetranscriptionstartsites
AT anderssonrobin regulatingretrotransposonactivitythroughtheuseofalternativetranscriptionstartsites
AT schurracatherine regulatingretrotransposonactivitythroughtheuseofalternativetranscriptionstartsites
AT arcangiolibenoit regulatingretrotransposonactivitythroughtheuseofalternativetranscriptionstartsites
AT sandelinalbin regulatingretrotransposonactivitythroughtheuseofalternativetranscriptionstartsites
AT nielsenolaf regulatingretrotransposonactivitythroughtheuseofalternativetranscriptionstartsites
AT ekwallkarl regulatingretrotransposonactivitythroughtheuseofalternativetranscriptionstartsites