Cargando…

IMP1, an mRNA binding protein that reduces the metastatic potential of breast cancer in a mouse model

Cells that are able to localize β-actin mRNA efficiently have decreased metastatic potential. Invasive carcinoma cells derived from primary mammary tumors have reduced levels of an RNA binding protein IMP1/ZBP1/IGF2BP1, required for β-actin mRNA localization. We showed previously that in human breas...

Descripción completa

Detalles Bibliográficos
Autores principales: Nwokafor, Chiso U., Sellers, Rani S., Singer, Robert H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341935/
https://www.ncbi.nlm.nih.gov/pubmed/27655671
http://dx.doi.org/10.18632/oncotarget.12083
Descripción
Sumario:Cells that are able to localize β-actin mRNA efficiently have decreased metastatic potential. Invasive carcinoma cells derived from primary mammary tumors have reduced levels of an RNA binding protein IMP1/ZBP1/IGF2BP1, required for β-actin mRNA localization. We showed previously that in human breast carcinoma cells in vitro, this protein suppresses invasion. In this work we examined whether its re-expression can suppress breast cancer metastasis in a breast cancer mouse model. We developed a mouse conditionally expressing IMP1-GFP (hereinafter referred to as the IMP1 transgene) specifically in the mammary gland of a PYMT breast cancer mouse. We found that mice conditionally expressing the IMP1 transgene showed little or no metastases to the lungs from the primary tumor in contrast to PYMT mice not expressing IMP1, which uniformly develop metastases at an early stage.