Cargando…

Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways

Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from trans...

Descripción completa

Detalles Bibliográficos
Autores principales: Jullien, Jerome, Vodnala, Munender, Pasque, Vincent, Oikawa, Mami, Miyamoto, Kei, Allen, George, David, Sarah Anne, Brochard, Vincent, Wang, Stan, Bradshaw, Charles, Koseki, Haruhiko, Sartorelli, Vittorio, Beaujean, Nathalie, Gurdon, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344684/
https://www.ncbi.nlm.nih.gov/pubmed/28257702
http://dx.doi.org/10.1016/j.molcel.2017.01.030
Descripción
Sumario:Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos.