Cargando…

Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets

Marker gene sequencing of microbial communities has generated big datasets of microbial relative abundances varying across environmental conditions, sample sites and treatments. These data often come with putative phylogenies, providing unique opportunities to investigate how shared evolutionary his...

Descripción completa

Detalles Bibliográficos
Autores principales: Washburne, Alex D., Silverman, Justin D., Leff, Jonathan W., Bennett, Dominic J., Darcy, John L., Mukherjee, Sayan, Fierer, Noah, David, Lawrence A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345826/
https://www.ncbi.nlm.nih.gov/pubmed/28289558
http://dx.doi.org/10.7717/peerj.2969
_version_ 1782513788410396672
author Washburne, Alex D.
Silverman, Justin D.
Leff, Jonathan W.
Bennett, Dominic J.
Darcy, John L.
Mukherjee, Sayan
Fierer, Noah
David, Lawrence A.
author_facet Washburne, Alex D.
Silverman, Justin D.
Leff, Jonathan W.
Bennett, Dominic J.
Darcy, John L.
Mukherjee, Sayan
Fierer, Noah
David, Lawrence A.
author_sort Washburne, Alex D.
collection PubMed
description Marker gene sequencing of microbial communities has generated big datasets of microbial relative abundances varying across environmental conditions, sample sites and treatments. These data often come with putative phylogenies, providing unique opportunities to investigate how shared evolutionary history affects microbial abundance patterns. Here, we present a method to identify the phylogenetic factors driving patterns in microbial community composition. We use the method, “phylofactorization,” to re-analyze datasets from the human body and soil microbial communities, demonstrating how phylofactorization is a dimensionality-reducing tool, an ordination-visualization tool, and an inferential tool for identifying edges in the phylogeny along which putative functional ecological traits may have arisen.
format Online
Article
Text
id pubmed-5345826
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-53458262017-03-13 Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets Washburne, Alex D. Silverman, Justin D. Leff, Jonathan W. Bennett, Dominic J. Darcy, John L. Mukherjee, Sayan Fierer, Noah David, Lawrence A. PeerJ Computational Biology Marker gene sequencing of microbial communities has generated big datasets of microbial relative abundances varying across environmental conditions, sample sites and treatments. These data often come with putative phylogenies, providing unique opportunities to investigate how shared evolutionary history affects microbial abundance patterns. Here, we present a method to identify the phylogenetic factors driving patterns in microbial community composition. We use the method, “phylofactorization,” to re-analyze datasets from the human body and soil microbial communities, demonstrating how phylofactorization is a dimensionality-reducing tool, an ordination-visualization tool, and an inferential tool for identifying edges in the phylogeny along which putative functional ecological traits may have arisen. PeerJ Inc. 2017-02-09 /pmc/articles/PMC5345826/ /pubmed/28289558 http://dx.doi.org/10.7717/peerj.2969 Text en ©2017 Washburne et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Computational Biology
Washburne, Alex D.
Silverman, Justin D.
Leff, Jonathan W.
Bennett, Dominic J.
Darcy, John L.
Mukherjee, Sayan
Fierer, Noah
David, Lawrence A.
Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets
title Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets
title_full Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets
title_fullStr Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets
title_full_unstemmed Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets
title_short Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets
title_sort phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets
topic Computational Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345826/
https://www.ncbi.nlm.nih.gov/pubmed/28289558
http://dx.doi.org/10.7717/peerj.2969
work_keys_str_mv AT washburnealexd phylogeneticfactorizationofcompositionaldatayieldslineagelevelassociationsinmicrobiomedatasets
AT silvermanjustind phylogeneticfactorizationofcompositionaldatayieldslineagelevelassociationsinmicrobiomedatasets
AT leffjonathanw phylogeneticfactorizationofcompositionaldatayieldslineagelevelassociationsinmicrobiomedatasets
AT bennettdominicj phylogeneticfactorizationofcompositionaldatayieldslineagelevelassociationsinmicrobiomedatasets
AT darcyjohnl phylogeneticfactorizationofcompositionaldatayieldslineagelevelassociationsinmicrobiomedatasets
AT mukherjeesayan phylogeneticfactorizationofcompositionaldatayieldslineagelevelassociationsinmicrobiomedatasets
AT fierernoah phylogeneticfactorizationofcompositionaldatayieldslineagelevelassociationsinmicrobiomedatasets
AT davidlawrencea phylogeneticfactorizationofcompositionaldatayieldslineagelevelassociationsinmicrobiomedatasets