Cargando…
Strategies for power calculations in predictive biomarker studies in survival data
PURPOSE: Biomarkers and genomic signatures represent potentially predictive tools for precision medicine. Validation of predictive biomarkers in prospective or retrospective studies requires statistical justification of power and sample size. However, the design of these studies is complex and the s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348326/ https://www.ncbi.nlm.nih.gov/pubmed/27661007 http://dx.doi.org/10.18632/oncotarget.12124 |
_version_ | 1782514202182680576 |
---|---|
author | Chen, Dung-Tsa Huang, Po-Yu Lin, Hui-Yi Haura, Eric B. Antonia, Scott J. Cress, W. Douglas Gray, Jhanelle E. |
author_facet | Chen, Dung-Tsa Huang, Po-Yu Lin, Hui-Yi Haura, Eric B. Antonia, Scott J. Cress, W. Douglas Gray, Jhanelle E. |
author_sort | Chen, Dung-Tsa |
collection | PubMed |
description | PURPOSE: Biomarkers and genomic signatures represent potentially predictive tools for precision medicine. Validation of predictive biomarkers in prospective or retrospective studies requires statistical justification of power and sample size. However, the design of these studies is complex and the statistical methods and associated software are limited, especially in survival data. Herein, we address common statistical design issues relevant to these two types of studies and provide guidance and a general template for analysis. METHODS: A statistical interaction effect in the Cox proportional hazards model is used to describe predictive biomarkers. The analytic form by Peterson et al. and Lachin is utilized to calculate the statistical power for both prospective and retrospective studies. RESULTS: We demonstrate that the common mistake of using only Hazard Ratio's Ratio (HRR) or two hazard ratios (HRs) can mislead power calculations. We establish that the appropriate parameter settings for prospective studies require median survival time (MST) in 4 subgroups (treatment and control in positive biomarker, treatment and control in negative biomarker). For the retrospective study which has fixed survival time and censored status, we develop a strategy to harmonize the hypothesized parameters and the study cohort. Moreover, we provide an easily-adapted R software application to generate a template of statistical plan for predictive biomarker validation so investigators can easily incorporate into their study proposals. CONCLUSION: Our study provides guidance and software to help biostatisticians and clinicians design sound clinical studies for testing predictive biomarkers. |
format | Online Article Text |
id | pubmed-5348326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-53483262017-03-31 Strategies for power calculations in predictive biomarker studies in survival data Chen, Dung-Tsa Huang, Po-Yu Lin, Hui-Yi Haura, Eric B. Antonia, Scott J. Cress, W. Douglas Gray, Jhanelle E. Oncotarget Research Paper PURPOSE: Biomarkers and genomic signatures represent potentially predictive tools for precision medicine. Validation of predictive biomarkers in prospective or retrospective studies requires statistical justification of power and sample size. However, the design of these studies is complex and the statistical methods and associated software are limited, especially in survival data. Herein, we address common statistical design issues relevant to these two types of studies and provide guidance and a general template for analysis. METHODS: A statistical interaction effect in the Cox proportional hazards model is used to describe predictive biomarkers. The analytic form by Peterson et al. and Lachin is utilized to calculate the statistical power for both prospective and retrospective studies. RESULTS: We demonstrate that the common mistake of using only Hazard Ratio's Ratio (HRR) or two hazard ratios (HRs) can mislead power calculations. We establish that the appropriate parameter settings for prospective studies require median survival time (MST) in 4 subgroups (treatment and control in positive biomarker, treatment and control in negative biomarker). For the retrospective study which has fixed survival time and censored status, we develop a strategy to harmonize the hypothesized parameters and the study cohort. Moreover, we provide an easily-adapted R software application to generate a template of statistical plan for predictive biomarker validation so investigators can easily incorporate into their study proposals. CONCLUSION: Our study provides guidance and software to help biostatisticians and clinicians design sound clinical studies for testing predictive biomarkers. Impact Journals LLC 2016-09-19 /pmc/articles/PMC5348326/ /pubmed/27661007 http://dx.doi.org/10.18632/oncotarget.12124 Text en Copyright: © 2016 Chen et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Chen, Dung-Tsa Huang, Po-Yu Lin, Hui-Yi Haura, Eric B. Antonia, Scott J. Cress, W. Douglas Gray, Jhanelle E. Strategies for power calculations in predictive biomarker studies in survival data |
title | Strategies for power calculations in predictive biomarker studies in survival data |
title_full | Strategies for power calculations in predictive biomarker studies in survival data |
title_fullStr | Strategies for power calculations in predictive biomarker studies in survival data |
title_full_unstemmed | Strategies for power calculations in predictive biomarker studies in survival data |
title_short | Strategies for power calculations in predictive biomarker studies in survival data |
title_sort | strategies for power calculations in predictive biomarker studies in survival data |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348326/ https://www.ncbi.nlm.nih.gov/pubmed/27661007 http://dx.doi.org/10.18632/oncotarget.12124 |
work_keys_str_mv | AT chendungtsa strategiesforpowercalculationsinpredictivebiomarkerstudiesinsurvivaldata AT huangpoyu strategiesforpowercalculationsinpredictivebiomarkerstudiesinsurvivaldata AT linhuiyi strategiesforpowercalculationsinpredictivebiomarkerstudiesinsurvivaldata AT hauraericb strategiesforpowercalculationsinpredictivebiomarkerstudiesinsurvivaldata AT antoniascottj strategiesforpowercalculationsinpredictivebiomarkerstudiesinsurvivaldata AT cresswdouglas strategiesforpowercalculationsinpredictivebiomarkerstudiesinsurvivaldata AT grayjhanellee strategiesforpowercalculationsinpredictivebiomarkerstudiesinsurvivaldata |