Cargando…
Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells
The RNA-binding protein La is overexpressed in a number of tumor tissues and is thought to support tumorigenesis by binding to and facilitating the expression of mRNAs encoding tumor-promoting and anti-apoptotic factors. Hence, small molecules able to block the binding of La to specific RNAs could h...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349447/ https://www.ncbi.nlm.nih.gov/pubmed/28291789 http://dx.doi.org/10.1371/journal.pone.0173246 |
_version_ | 1782514470270009344 |
---|---|
author | Sommer, Gunhild Fedarovich, Alena Kota, Venkatesh Rodriguez, Reycel Smith, Charles D. Heise, Tilman |
author_facet | Sommer, Gunhild Fedarovich, Alena Kota, Venkatesh Rodriguez, Reycel Smith, Charles D. Heise, Tilman |
author_sort | Sommer, Gunhild |
collection | PubMed |
description | The RNA-binding protein La is overexpressed in a number of tumor tissues and is thought to support tumorigenesis by binding to and facilitating the expression of mRNAs encoding tumor-promoting and anti-apoptotic factors. Hence, small molecules able to block the binding of La to specific RNAs could have a therapeutic impact by reducing the expression of tumor-promoting and anti-apoptotic factors. Toward this novel therapeutic strategy, we aimed to develop a high-throughput fluorescence polarization assay to screen small compound libraries for molecules blocking the binding of La to an RNA element derived from cyclin D1 mRNA. Herein, we make use of a robust fluorescence polarization assay and the validation of primary hits by electrophoretic mobility shift assays. We showed recently that La protects cells against cisplatin treatment by stimulating the protein synthesis of the anti-apoptotic factor Bcl2. Here, we show by RNA immunoprecipitation experiments that one small compound specifically impairs the association of La with Bcl2 mRNA in cells and sensitizes cells for cipslatin-induced cell death. In summary, we report the application of a high-throughput fluorescence polarization assay to identify small compounds that impair the binding of La to target RNAs in vitro and in cells. |
format | Online Article Text |
id | pubmed-5349447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53494472017-04-06 Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells Sommer, Gunhild Fedarovich, Alena Kota, Venkatesh Rodriguez, Reycel Smith, Charles D. Heise, Tilman PLoS One Research Article The RNA-binding protein La is overexpressed in a number of tumor tissues and is thought to support tumorigenesis by binding to and facilitating the expression of mRNAs encoding tumor-promoting and anti-apoptotic factors. Hence, small molecules able to block the binding of La to specific RNAs could have a therapeutic impact by reducing the expression of tumor-promoting and anti-apoptotic factors. Toward this novel therapeutic strategy, we aimed to develop a high-throughput fluorescence polarization assay to screen small compound libraries for molecules blocking the binding of La to an RNA element derived from cyclin D1 mRNA. Herein, we make use of a robust fluorescence polarization assay and the validation of primary hits by electrophoretic mobility shift assays. We showed recently that La protects cells against cisplatin treatment by stimulating the protein synthesis of the anti-apoptotic factor Bcl2. Here, we show by RNA immunoprecipitation experiments that one small compound specifically impairs the association of La with Bcl2 mRNA in cells and sensitizes cells for cipslatin-induced cell death. In summary, we report the application of a high-throughput fluorescence polarization assay to identify small compounds that impair the binding of La to target RNAs in vitro and in cells. Public Library of Science 2017-03-14 /pmc/articles/PMC5349447/ /pubmed/28291789 http://dx.doi.org/10.1371/journal.pone.0173246 Text en © 2017 Sommer et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Sommer, Gunhild Fedarovich, Alena Kota, Venkatesh Rodriguez, Reycel Smith, Charles D. Heise, Tilman Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells |
title | Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells |
title_full | Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells |
title_fullStr | Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells |
title_full_unstemmed | Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells |
title_short | Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells |
title_sort | applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking la:rna interactions in vitro and in cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349447/ https://www.ncbi.nlm.nih.gov/pubmed/28291789 http://dx.doi.org/10.1371/journal.pone.0173246 |
work_keys_str_mv | AT sommergunhild applyingahighthroughputfluorescencepolarizationassayforthediscoveryofchemicalprobesblockinglarnainteractionsinvitroandincells AT fedarovichalena applyingahighthroughputfluorescencepolarizationassayforthediscoveryofchemicalprobesblockinglarnainteractionsinvitroandincells AT kotavenkatesh applyingahighthroughputfluorescencepolarizationassayforthediscoveryofchemicalprobesblockinglarnainteractionsinvitroandincells AT rodriguezreycel applyingahighthroughputfluorescencepolarizationassayforthediscoveryofchemicalprobesblockinglarnainteractionsinvitroandincells AT smithcharlesd applyingahighthroughputfluorescencepolarizationassayforthediscoveryofchemicalprobesblockinglarnainteractionsinvitroandincells AT heisetilman applyingahighthroughputfluorescencepolarizationassayforthediscoveryofchemicalprobesblockinglarnainteractionsinvitroandincells |