Cargando…
Characterizing Class‐Specific Exposure‐Viral Load Suppression Response of HIV Antiretrovirals Using A Model‐Based Meta‐Analysis
We applied model‐based meta‐analysis of viral suppression as a function of drug exposure and in vitro potency for short‐term monotherapy in human immunodeficiency virus type 1 (HIV‐1)‐infected treatment‐naïve patients to set pharmacokinetic targets for development of nonnucleoside reverse transcript...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5351339/ https://www.ncbi.nlm.nih.gov/pubmed/27171172 http://dx.doi.org/10.1111/cts.12395 |
Sumario: | We applied model‐based meta‐analysis of viral suppression as a function of drug exposure and in vitro potency for short‐term monotherapy in human immunodeficiency virus type 1 (HIV‐1)‐infected treatment‐naïve patients to set pharmacokinetic targets for development of nonnucleoside reverse transcriptase inhibitors (NNRTIs) and integrase strand transfer inhibitors (InSTIs). We developed class‐specific models relating viral load kinetics from monotherapy studies to potency normalized steady‐state trough plasma concentrations. These models were integrated with a literature assessment of doses which demonstrated to have long‐term efficacy in combination therapy, in order to set steady‐state trough concentration targets of 6.17‐ and 2.15‐fold above potency for NNRTIs and InSTIs, respectively. Both the models developed and the pharmacokinetic targets derived can be used to guide compound selection during preclinical development and to predict the dose–response of new antiretrovirals to inform early clinical trial design. |
---|