Cargando…

High Photoresponsivity Ge-dot PhotoMOSFETs for Low-power Monolithically-Integrated Si Optical Interconnects

We report the demonstration of high-photoresponsivity Ge-dot photoMOSFETs in a standard MOS configuration for the detection of 850–1550 nm illumination. Each device has a self-organized, gate-stacking heterostructure of SiO(2)/Ge-dot/SiO(2)/SiGe-channel which is simultaneously fabricated in a single...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuo, Ming-Hao, Lee, Meng-Chun, Lin, Horng-Chih, George, Tom, Li, Pei-Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353644/
https://www.ncbi.nlm.nih.gov/pubmed/28300145
http://dx.doi.org/10.1038/srep44402
Descripción
Sumario:We report the demonstration of high-photoresponsivity Ge-dot photoMOSFETs in a standard MOS configuration for the detection of 850–1550 nm illumination. Each device has a self-organized, gate-stacking heterostructure of SiO(2)/Ge-dot/SiO(2)/SiGe-channel which is simultaneously fabricated in a single oxidation step. Superior control of the geometrical size and chemical composition for our Ge nanodots/SiO(2)/Si(1-x)Ge(x)-shell MOS structure enables the practically-achievable, gate-stacking design for our Ge-dot photoMOSFETs. Both the gate oxide thickness and the diameter of the Ge dots are controllable. Large photocurrent enhancement was achieved for our Ge-dot photoMOSFETs when electrically-biased at ON- and OFF-states based on the Ge dot mediating photovoltaic and photoconductive effects, respectively. Both photoelectric conversion efficiency and response speed are significantly improved by reducing the gate-oxide thickness from 38.5 nm to 3.5 nm, and by decreasing Ge-dot size from 90 nm to 50 nm for a given areal density of Ge dots. Photoresponsivity ([Image: see text]) values as high as 1.2 × 10(4) A/W and 300 A/W are measured for 10 nW illumination at 850 nm and 1550 nm, respectively. A response time of 0.48 ns and a 3 dB-frequency of 2 GHz were achieved for 50 nm-Ge-dot photoMOSFETs with channel lengths of 3 μm under pulsed 850 nm illumination.