Cargando…

In vitro drug testing based on contractile activity of C2C12 cells in an epigenetic drug model

Skeletal muscle tissue engineering holds great promise for pharmacological studies. Herein, we demonstrated an in vitro drug testing system using tissue-engineered skeletal muscle constructs. In response to epigenetic drugs, myotube differentiation of C2C12 myoblast cells was promoted in two-dimensi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ikeda, Kazushi, Ito, Akira, Imada, Ryusuke, Sato, Masanori, Kawabe, Yoshinori, Kamihira, Masamichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353687/
https://www.ncbi.nlm.nih.gov/pubmed/28300163
http://dx.doi.org/10.1038/srep44570
Descripción
Sumario:Skeletal muscle tissue engineering holds great promise for pharmacological studies. Herein, we demonstrated an in vitro drug testing system using tissue-engineered skeletal muscle constructs. In response to epigenetic drugs, myotube differentiation of C2C12 myoblast cells was promoted in two-dimensional cell cultures, but the levels of contractile force generation of tissue-engineered skeletal muscle constructs prepared by three-dimensional cell cultures were not correlated with the levels of myotube differentiation in two-dimensional cell cultures. In contrast, sarcomere formation and contractile activity in two-dimensional cell cultures were highly correlated with contractile force generation of tissue-engineered skeletal muscle constructs. Among the epigenetic drugs tested, trichostatin A significantly improved contractile force generation of tissue-engineered skeletal muscle constructs. Follistatin expression was also enhanced by trichostatin A treatment, suggesting the importance of follistatin in sarcomere formation of muscular tissues. These observations indicate that contractility data are indispensable for in vitro drug screening.