Cargando…

Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3

Oncogenic protein E6 of human papillomavirus type 16 (HPV-16) is believed to involve in the aberrant methylation in cervical cancer as it upregulates DNA methyltransferase 1 (DNMT1) through tumor suppressor p53. In addition, DNA demethylating agent induces the expression of one of the HPV-16 E6 regu...

Descripción completa

Detalles Bibliográficos
Autores principales: Yeung, Chi Lam Au, Tsang, Tsun Yee, Yau, Pak Lun, Kwok, Tim Tak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355333/
https://www.ncbi.nlm.nih.gov/pubmed/28077801
http://dx.doi.org/10.18632/oncotarget.14555
Descripción
Sumario:Oncogenic protein E6 of human papillomavirus type 16 (HPV-16) is believed to involve in the aberrant methylation in cervical cancer as it upregulates DNA methyltransferase 1 (DNMT1) through tumor suppressor p53. In addition, DNA demethylating agent induces the expression of one of the HPV-16 E6 regulated microRNAs (miRs), miR-23b, in human cervical carcinoma SiHa cells. Thus, the importance of DNA methylation and miR-23b in HPV-16 E6 associated cervical cancer development is investigated. In the present study, however, it is found that miR-23b is not embedded in any typical CpG island. Nevertheless, a functional CpG island is predicted in the promoter region of C9orf3, the host gene of miR-23b, and is validated by methylation-specific PCR and bisulfite genomic sequencing analyses. Besides, c-MET is confirmed to be a target gene of miR-23b. Silencing of HPV-16 E6 is found to increase the expression of miR-23b, decrease the expression of c-MET and thus induce the apoptosis of SiHa cells through the c-MET downstream signaling pathway. Taken together, the tumor suppressive miR-23b is epigenetically inactivated through its host gene C9orf3 and this is probably a critical pathway during HPV-16 E6 associated cervical cancer development.