Cargando…
Calcineurin/nuclear factor-κB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats
It is known that inhaled anesthetics induce neuroinflammation and facilitate postoperative cognitive dysfunction (POCD) in aged individuals; however, the mechanisms by which they mediate these effects remain elusive. Inhalation of the isoflurane anesthetic leads to opening of the mitochondrial perme...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355741/ https://www.ncbi.nlm.nih.gov/pubmed/27909728 http://dx.doi.org/10.3892/mmr.2016.5967 |
_version_ | 1782515649107460096 |
---|---|
author | Li, Zhengqian Ni, Cheng Xia, Chun Jaw, Joey Wang, Yujie Cao, Yiyun Xu, Mao Guo, Xiangyang |
author_facet | Li, Zhengqian Ni, Cheng Xia, Chun Jaw, Joey Wang, Yujie Cao, Yiyun Xu, Mao Guo, Xiangyang |
author_sort | Li, Zhengqian |
collection | PubMed |
description | It is known that inhaled anesthetics induce neuroinflammation and facilitate postoperative cognitive dysfunction (POCD) in aged individuals; however, the mechanisms by which they mediate these effects remain elusive. Inhalation of the isoflurane anesthetic leads to opening of the mitochondrial permeability transition pore and loss of mitochondrial membrane potential. Therefore, mitochondrial retrograde signaling, which is an adaptive mechanism that facilitates the transmission of signals from dysfunctional mitochondria to the nucleus to activate target gene expression, may be activated during isoflurane inhalation. Therefore, the present study was designed to investigate the role of mitochondrial retrograde signaling in isoflurane-induced hippocampal neuroinflammation and cognitive impairment in aged rats. As calcineurin (CaN) serves an important role in the initiation of mitochondrial retrograde signaling, and nuclear factor-κB (NF-κB) is involved in CaN signaling, their effects on isoflurane-induced hippocampal neuroinflammation and cognitive impairment were investigated. Reactive oxygen species and mitochondrial membrane potential fluorescence staining, western blotting, colorimetric analysis, ELISA, immunofluorescence and the Morris water maze test were used in the present study. The results indicate that isoflurane induced hippocampal mitochondrial dysfunction and activated CaN, which subsequently lead to the putative activation of NF-κB. These resulted in the elevation of interleukin-1β (IL-1β) expression (a typical marker of neuroinflammation), and was associated with cognitive impairment in aged rats. In addition, CaN and NF-κB inhibition attenuated isoflurane-induced neuroinflammation and subsequent cognitive impairment. In conclusion, the results of the present study demonstrate the role of mitochondrial retrograde signaling and associated protein factors in inhaled anesthetic-induced neuroinflammation and cognitive impairment. These protein factors may therefore present promising therapeutic targets for the prevention of POCD. |
format | Online Article Text |
id | pubmed-5355741 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-53557412017-03-31 Calcineurin/nuclear factor-κB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats Li, Zhengqian Ni, Cheng Xia, Chun Jaw, Joey Wang, Yujie Cao, Yiyun Xu, Mao Guo, Xiangyang Mol Med Rep Articles It is known that inhaled anesthetics induce neuroinflammation and facilitate postoperative cognitive dysfunction (POCD) in aged individuals; however, the mechanisms by which they mediate these effects remain elusive. Inhalation of the isoflurane anesthetic leads to opening of the mitochondrial permeability transition pore and loss of mitochondrial membrane potential. Therefore, mitochondrial retrograde signaling, which is an adaptive mechanism that facilitates the transmission of signals from dysfunctional mitochondria to the nucleus to activate target gene expression, may be activated during isoflurane inhalation. Therefore, the present study was designed to investigate the role of mitochondrial retrograde signaling in isoflurane-induced hippocampal neuroinflammation and cognitive impairment in aged rats. As calcineurin (CaN) serves an important role in the initiation of mitochondrial retrograde signaling, and nuclear factor-κB (NF-κB) is involved in CaN signaling, their effects on isoflurane-induced hippocampal neuroinflammation and cognitive impairment were investigated. Reactive oxygen species and mitochondrial membrane potential fluorescence staining, western blotting, colorimetric analysis, ELISA, immunofluorescence and the Morris water maze test were used in the present study. The results indicate that isoflurane induced hippocampal mitochondrial dysfunction and activated CaN, which subsequently lead to the putative activation of NF-κB. These resulted in the elevation of interleukin-1β (IL-1β) expression (a typical marker of neuroinflammation), and was associated with cognitive impairment in aged rats. In addition, CaN and NF-κB inhibition attenuated isoflurane-induced neuroinflammation and subsequent cognitive impairment. In conclusion, the results of the present study demonstrate the role of mitochondrial retrograde signaling and associated protein factors in inhaled anesthetic-induced neuroinflammation and cognitive impairment. These protein factors may therefore present promising therapeutic targets for the prevention of POCD. D.A. Spandidos 2017-01 2016-11-24 /pmc/articles/PMC5355741/ /pubmed/27909728 http://dx.doi.org/10.3892/mmr.2016.5967 Text en Copyright: © Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Li, Zhengqian Ni, Cheng Xia, Chun Jaw, Joey Wang, Yujie Cao, Yiyun Xu, Mao Guo, Xiangyang Calcineurin/nuclear factor-κB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats |
title | Calcineurin/nuclear factor-κB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats |
title_full | Calcineurin/nuclear factor-κB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats |
title_fullStr | Calcineurin/nuclear factor-κB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats |
title_full_unstemmed | Calcineurin/nuclear factor-κB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats |
title_short | Calcineurin/nuclear factor-κB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats |
title_sort | calcineurin/nuclear factor-κb signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355741/ https://www.ncbi.nlm.nih.gov/pubmed/27909728 http://dx.doi.org/10.3892/mmr.2016.5967 |
work_keys_str_mv | AT lizhengqian calcineurinnuclearfactorkbsignalingmediatesisofluraneinducedhippocampalneuroinflammationandsubsequentcognitiveimpairmentinagedrats AT nicheng calcineurinnuclearfactorkbsignalingmediatesisofluraneinducedhippocampalneuroinflammationandsubsequentcognitiveimpairmentinagedrats AT xiachun calcineurinnuclearfactorkbsignalingmediatesisofluraneinducedhippocampalneuroinflammationandsubsequentcognitiveimpairmentinagedrats AT jawjoey calcineurinnuclearfactorkbsignalingmediatesisofluraneinducedhippocampalneuroinflammationandsubsequentcognitiveimpairmentinagedrats AT wangyujie calcineurinnuclearfactorkbsignalingmediatesisofluraneinducedhippocampalneuroinflammationandsubsequentcognitiveimpairmentinagedrats AT caoyiyun calcineurinnuclearfactorkbsignalingmediatesisofluraneinducedhippocampalneuroinflammationandsubsequentcognitiveimpairmentinagedrats AT xumao calcineurinnuclearfactorkbsignalingmediatesisofluraneinducedhippocampalneuroinflammationandsubsequentcognitiveimpairmentinagedrats AT guoxiangyang calcineurinnuclearfactorkbsignalingmediatesisofluraneinducedhippocampalneuroinflammationandsubsequentcognitiveimpairmentinagedrats |