Cargando…
Monitoring of dynamic changes in Keyhole Limpet Hemocyanin (KLH)-specific B cells in KLH-vaccinated cancer patients
Keyhole limpet hemocyanin (KLH) is used as an immunogenic neo-antigen for various clinical applications and during vaccine development. For advanced monitoring of KLH-based interventions, we developed a flow cytometry-based assay for the ex vivo detection, phenotyping and isolation of KLH-specific B...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361210/ https://www.ncbi.nlm.nih.gov/pubmed/28344338 http://dx.doi.org/10.1038/srep43486 |
Sumario: | Keyhole limpet hemocyanin (KLH) is used as an immunogenic neo-antigen for various clinical applications and during vaccine development. For advanced monitoring of KLH-based interventions, we developed a flow cytometry-based assay for the ex vivo detection, phenotyping and isolation of KLH-specific B cells. As proof-of-principle, we analyzed 10 melanoma patients exposed to KLH during anti-cancer dendritic cell vaccination. Our assay demonstrated sensitive and specific detection of KLH-specific B cells in peripheral blood and KLH-specific B cell frequencies strongly correlated with anti-KLH serum antibody titers. Profiling of B cell subsets over the vaccination course revealed that KLH-specific B cells matured from naïve to class-switched memory B cells, confirming the prototypic B cell response to a neo-antigen. We conclude that flow-cytometric detection and in-depth phenotyping of KLH-specific B cells is specific, sensitive, and scalable. Our findings provide novel opportunities to monitor KLH-specific immune responses and serve as a blueprint for the development of new flow-cytometric protocols. |
---|