Cargando…
A first-in-human phase 1 study of a hepcidin monoclonal antibody, LY2787106, in cancer-associated anemia
BACKGROUND: Hepcidin plays a central role in iron homeostasis and erythropoiesis. Neutralizing hepcidin with a monoclonal antibody (mAb) may prevent ferroportin internalization, restore iron efflux from cells, and allow transferrin-mediated iron transport to the bone marrow. This multicenter, phase...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361694/ https://www.ncbi.nlm.nih.gov/pubmed/28327200 http://dx.doi.org/10.1186/s13045-017-0427-x |
Sumario: | BACKGROUND: Hepcidin plays a central role in iron homeostasis and erythropoiesis. Neutralizing hepcidin with a monoclonal antibody (mAb) may prevent ferroportin internalization, restore iron efflux from cells, and allow transferrin-mediated iron transport to the bone marrow. This multicenter, phase 1 study evaluated the safety, pharmacokinetics (PK), pharmacodynamics (PD), and efficacy of a fully humanized mAb (LY2787106) with high affinity for hepcidin in cancer patients with anemia. METHODS: Thirty-three patients with hepcidin levels ≥5 ng/mL received LY2787106 either every 3 weeks (19 patients, dose range 0.3–10 mg/kg) (part A) or weekly (14 patients, dose 10 mg/kg) (part B). LY2787106 PK/PD markers of iron and hematology biology were measured. RESULTS: LY2787106 clearance (32 mL/h) and volume of distribution (7.7 L) were independent of dose and time, leading to a dose-proportional increase in concentration with dose. Consistent dose-dependent increases in serum iron, and transferrin saturation were seen at the 3 and 10 mg/kg dose levels, typically peaking within 24 h after LY2787106 administration and returning to baseline by day 8. CONCLUSIONS: Our findings indicate that LY2787106 was well tolerated in cancer patients with anemia and that targeting the hepcidin-ferroportin pathway by neutralizing hepcidin resulted in transient iron mobilization, thus supporting the role of hepcidin in iron regulation. TRIAL REGISTRATION: ClinicalTrial.gov, NCT01340976 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13045-017-0427-x) contains supplementary material, which is available to authorized users. |
---|