Cargando…

Development and Application of Human Renal Proximal Tubule Epithelial Cells for Assessment of Compound Toxicity

Kidney toxicity is a major problem both in drug development and clinical settings. It is difficult to predict nephrotoxicity in part because of the lack of appropriate in vitro cell models, limited endpoints, and the observation that the activity of membrane transporters which plays important roles...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shuaizhang, Zhao, Jinghua, Huang, Ruili, Steiner, Toni, Bourner, Maureen, Mitchell, Michael, Thompson, David C., Zhao, Bin, Xia, Menghang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Open 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362976/
https://www.ncbi.nlm.nih.gov/pubmed/28401035
http://dx.doi.org/10.2174/2213988501711010019
Descripción
Sumario:Kidney toxicity is a major problem both in drug development and clinical settings. It is difficult to predict nephrotoxicity in part because of the lack of appropriate in vitro cell models, limited endpoints, and the observation that the activity of membrane transporters which plays important roles in nephrotoxicity by affecting the pharmacokinetic profile of drugs is often not taken into account. We developed a new cell model using pseudo-immortalized human primary renal proximal tubule epithelial cells. This cell line (SA7K) was characterized by the presence of proximal tubule cell markers as well as several functional properties, including transporter activity and response to a few well-characterized nephrotoxicants. We subsequently evaluated a group of potential nephrotoxic compounds in SA7K cells and compared them to a commonly used human immortalized kidney cell line (HK-2). Cells were treated with test compounds and three endpoints were analyzed, including cell viability, apoptosis and mitochondrial membrane potential. The results showed that most of the known nephrotoxic compounds could be detected in one or more of these endpoints. There were sensitivity differences in response to several of the chemicals between HK-2 and SA7K cells, which may relate to differences in expressions of key transporters or other components of nephrotoxicity pathways. Our data suggest that SA7K cells appear as promising for the early detection of renal toxicants.