Cargando…
STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling
Type I interferons (IFNs) are multifunctional cytokines that regulate immune responses and cellular functions but also can have detrimental effects on human health. A tight regulatory network therefore controls IFN signaling, which in turn interferes with medical interventions. The JAK-STAT signalin...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365074/ https://www.ncbi.nlm.nih.gov/pubmed/28165510 http://dx.doi.org/10.1038/nsmb.3378 |
Sumario: | Type I interferons (IFNs) are multifunctional cytokines that regulate immune responses and cellular functions but also can have detrimental effects on human health. A tight regulatory network therefore controls IFN signaling, which in turn interferes with medical interventions. The JAK-STAT signaling pathway transmits the IFN extracellular signal to the nucleus for alterations of gene expression. STAT2 is a well-known essential and specific positive effector of type I IFN signaling. Here, we report that STAT2 is also a previously unrecognized crucial component of the USP18-mediated negative feedback control in both, human and murine cells. We found that STAT2 recruits USP18 to the type I IFN receptor subunit IFNAR2 via its constitutive membrane-distal STAT2 binding site. This mechanistic coupling of effector and negative feedback functions of STAT2 provides novel strategies in treatment of IFN signaling related human diseases. |
---|