Cargando…
Non-destructive determination of ethanol levels in fermented alcoholic beverages using Fourier transform mid-infrared spectroscopy
BACKGROUND: Traditional fermented alcoholic beverages are indigenous to a particular area and are prepared by the local people using an age-old techniques and locally available raw materials. The main objective of this work was the direct determination of ethanol in traditional fermented alcoholic b...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5366996/ https://www.ncbi.nlm.nih.gov/pubmed/29086811 http://dx.doi.org/10.1186/s13065-017-0257-5 |
Sumario: | BACKGROUND: Traditional fermented alcoholic beverages are indigenous to a particular area and are prepared by the local people using an age-old techniques and locally available raw materials. The main objective of this work was the direct determination of ethanol in traditional fermented alcoholic beverages using mid infrared spectroscopy with partial least squares regression, verifying the robustness of the calibration models and to assess the quality of beverages. RESULTS: The level of ethanol determination in Ethiopian traditional fermented alcoholic beverages was done using mid infrared spectroscopy with partial least squares regression (MIR-PLS). The calibration and validation sets, and real samples spectra were collected with 32 scans from 850–1200 cm(−1). A total of 25 synthetic standards (calibration and validation sets) with ethanol (2–10% w/w) and sugars (glucose, fructose, sucrose and maltose) (0–5% w/w) compositions were used to construct and validate the models. Twenty-five different calibration models were validated by cross-validation approach with 25 left out standards. A large number of pre-treatments were verified, but the best pre-treatment was subtracting minimum + 2nd derivative. The model was found to have the highest coefficients of determination for calibration and cross-validation (0.999, 0.999) and root mean square error of prediction [0.1% (w/w)]. For practical relevance, the MIR-PLS predicted values were compared against the values determined by gas chromatography. The predicted values of the model were found to be in excellent agreement with gas chromatographic measurements. In addition, recovery test was conducted with spiking 2.4–6.4% (w/w) ethanol. Based on the obtained recovery percentage, 85.4–107% (w/w), the matrix effects of the samples were not considerable. CONCLUSION: The proposed technique, MIR-PLS at 1200–850 cm(−1) spectral region was found appropriate to quantify ethanol in fermented alcoholic beverages. Among the studied beverages (Tella, Netch Tella, Filter Tella, Korefe, Keribo, Borde and Birz), the average ethanol contents ranged from 0.77–9.1% (v/v). Tej was found to have the highest ethanol content whereas Keribo had the least ethanol content. The developed method was simple, fast, precise and accurate. Moreover, no sample preparation was required at all. However, it should be noted that the present procedure is probably not usable for regulatory purposes (e.g. controlling labelling). |
---|