Cargando…
A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer’s Disease Diagnosis
Classification is one of the most important tasks in machine learning. Due to feature redundancy or outliers in samples, using all available data for training a classifier may be suboptimal. For example, the Alzheimer’s disease (AD) is correlated with certain brain regions or single nucleotide polym...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5372170/ https://www.ncbi.nlm.nih.gov/pubmed/28358032 http://dx.doi.org/10.1038/srep45269 |