Cargando…
Peroxisome Proliferator-Activated Receptor α Activation Is Not the Main Contributor to Teratogenesis Elicited by Polar Compounds from Oxidized Frying Oil
We previously reported that polar compounds (PO) in cooking oil are teratogenic and perturbed retinoic acid (RA) metabolism. Considering PO as a potent peroxisome proliferator-activated receptor α (PPARα) activator, this study aimed to investigate the role of PPARα in PO-induced teratogenesis and di...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5372526/ https://www.ncbi.nlm.nih.gov/pubmed/28264465 http://dx.doi.org/10.3390/ijms18030510 |
Sumario: | We previously reported that polar compounds (PO) in cooking oil are teratogenic and perturbed retinoic acid (RA) metabolism. Considering PO as a potent peroxisome proliferator-activated receptor α (PPARα) activator, this study aimed to investigate the role of PPARα in PO-induced teratogenesis and disturbance of RA metabolism. Female PPARα knockout or wild type mice were mated with males of the same genotype. Pregnant mice were fed a diet containing 10% fat from either fresh oil (FO) or PO from gestational day1 to day18, and killed at day18. The PO diet significantly increased the incidence of teratogenesis and fetal RA concentrations, regardless of genotype. Though PPARα deficiency disturbed maternal RA homeostasis, itself did not contribute to teratogenesis as long as FO diet was given. The mRNA profile of genes involved in RA metabolism was differentially affected by diet or genotype in mothers and fetuses. Based on hepatic mRNA levels of genes involved in xenobiotic metabolism, we inferred that PO not only activated PPARα, but also altered transactivity of other xenobiotic receptors. We concluded that PO-induced fetal anomalies and RA accumulation were independent of PPARα activation. |
---|