Cargando…

A statistical method for the conservative adjustment of false discovery rate (q-value)

BACKGROUND: q-value is a widely used statistical method for estimating false discovery rate (FDR), which is a conventional significance measure in the analysis of genome-wide expression data. q-value is a random variable and it may underestimate FDR in practice. An underestimated FDR can lead to une...

Descripción completa

Detalles Bibliográficos
Autor principal: Lai, Yinglei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374657/
https://www.ncbi.nlm.nih.gov/pubmed/28361675
http://dx.doi.org/10.1186/s12859-017-1474-6
Descripción
Sumario:BACKGROUND: q-value is a widely used statistical method for estimating false discovery rate (FDR), which is a conventional significance measure in the analysis of genome-wide expression data. q-value is a random variable and it may underestimate FDR in practice. An underestimated FDR can lead to unexpected false discoveries in the follow-up validation experiments. This issue has not been well addressed in literature, especially in the situation when the permutation procedure is necessary for p-value calculation. RESULTS: We proposed a statistical method for the conservative adjustment of q-value. In practice, it is usually necessary to calculate p-value by a permutation procedure. This was also considered in our adjustment method. We used simulation data as well as experimental microarray or sequencing data to illustrate the usefulness of our method. CONCLUSIONS: The conservativeness of our approach has been mathematically confirmed in this study. We have demonstrated the importance of conservative adjustment of q-value, particularly in the situation that the proportion of differentially expressed genes is small or the overall differential expression signal is weak.