Cargando…
Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning
Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for point...
Autores principales: | Plaza-Leiva, Victoria, Gomez-Ruiz, Jose Antonio, Mandow, Anthony, García-Cerezo, Alfonso |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375880/ https://www.ncbi.nlm.nih.gov/pubmed/28294963 http://dx.doi.org/10.3390/s17030594 |
Ejemplares similares
-
Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform
por: Morales, Jesús, et al.
Publicado: (2018) -
Airborne LiDAR point cloud classification using PointNet++ network with full neighborhood features
por: Nong, Xingzhong, et al.
Publicado: (2023) -
Voxel-FPN: Multi-Scale Voxel Feature Aggregation for 3D Object Detection from LIDAR Point Clouds
por: Kuang, Hongwu, et al.
Publicado: (2020) -
Supervised spatial classification of multispectral LiDAR data in urban areas
por: Huo, Lian-Zhi, et al.
Publicado: (2018) -
Deep Learning for LiDAR Point Cloud Classification in Remote Sensing
por: Diab, Ahmed, et al.
Publicado: (2022)