Cargando…
PKA phosphorylation reshapes the pharmacological kinetics of BmK AS, a unique site-4 sodium channel-specific modulator
Although modulation of the activity of voltage-gated sodium channels (VGSCs) by protein kinase A (PKA) phosphorylation has been investigated in multiple preparations, the pharmacological sensitivity of VGSCs to scorpion toxins after PKA phosphorylation has rarely been approached. In this study, the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379197/ https://www.ncbi.nlm.nih.gov/pubmed/24430351 http://dx.doi.org/10.1038/srep03721 |
Sumario: | Although modulation of the activity of voltage-gated sodium channels (VGSCs) by protein kinase A (PKA) phosphorylation has been investigated in multiple preparations, the pharmacological sensitivity of VGSCs to scorpion toxins after PKA phosphorylation has rarely been approached. In this study, the effects of BmK AS, a sodium channel-specific modulator from Chinese scorpion Buthus martensi Karsch, on the voltage-dependent activation and inactivation of Na(v)1.2 were examined before and after PKA activation. After PKA phosphorylation, the pattern of dose-dependent modulation of BmK AS, on both Na(v)1.2α and Na(v)1.2 (α + β1) was reshaped. Meanwhile, the shifts in voltage-dependency of activation and inactivation induced by BmK AS were attenuated. The results suggested that PKA might play a role in different patterns how β-like toxins such as BmK AS modulate gating properties and peak currents of VGSCs. |
---|