Cargando…

Toll-Like Receptors 2, -3 and -4 Prime Microglia but not Astrocytes Across Central Nervous System Regions for ATP-Dependent Interleukin-1β Release

Interleukin-1β (IL-1β) is a crucial mediator in the pathogenesis of inflammatory diseases at the periphery and in the central nervous system (CNS). Produced as an unprocessed and inactive pro-form which accumulates intracellularly, release of the processed cytokine is strongly promoted by ATP acting...

Descripción completa

Detalles Bibliográficos
Autores principales: Facci, Laura, Barbierato, Massimo, Marinelli, Carla, Argentini, Carla, Skaper, Stephen D., Giusti, Pietro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381369/
https://www.ncbi.nlm.nih.gov/pubmed/25351234
http://dx.doi.org/10.1038/srep06824
Descripción
Sumario:Interleukin-1β (IL-1β) is a crucial mediator in the pathogenesis of inflammatory diseases at the periphery and in the central nervous system (CNS). Produced as an unprocessed and inactive pro-form which accumulates intracellularly, release of the processed cytokine is strongly promoted by ATP acting at the purinergic P2X(7) receptor (P2X(7)R) in cells primed with lipopolysaccharide (LPS), a Toll-like receptor (TLR) 4 ligand. Microglia are central to the inflammatory process and a major source of IL-1β when activated. Here we show that purified (>99%) microglia cultured from rat cortex, spinal cord and cerebellum respond robustly to ATP-dependent IL-1β release, upon priming with a number of TLR isoform ligands (zymosan and Pam3CSK4 for TLR2, poly(I:C) for TLR3). Cytokine release was prevented by a P2X(7)R antagonist and inhibitors of stress-activated protein kinases. Enriched astrocytes (≤5% microglia) from these CNS regions displayed responses qualitatively similar to microglia but became unresponsive upon eradication of residual microglia with the lysosomotropic agent Leu-Leu-OMe. Activation of multiple TLR isoforms in nervous system pathology, coupled with elevated extracellular ATP levels and subsequent P2X(7)R activation may represent an important route for microglia-derived IL-1β. This phenomenon may have important consequences for neuroinflammation and its position to the common pathology of CNS diseases.