Cargando…

Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases

Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movemen...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Hao, Dranchak, Patricia, Li, Zhiru, MacArthur, Ryan, Munson, Matthew S., Mehzabeen, Nurjahan, Baird, Nathan J., Battalie, Kevin P., Ross, David, Lovell, Scott, Carlow, Clotilde K. S., Suga, Hiroaki, Inglese, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382265/
https://www.ncbi.nlm.nih.gov/pubmed/28368002
http://dx.doi.org/10.1038/ncomms14932
_version_ 1782520065606811648
author Yu, Hao
Dranchak, Patricia
Li, Zhiru
MacArthur, Ryan
Munson, Matthew S.
Mehzabeen, Nurjahan
Baird, Nathan J.
Battalie, Kevin P.
Ross, David
Lovell, Scott
Carlow, Clotilde K. S.
Suga, Hiroaki
Inglese, James
author_facet Yu, Hao
Dranchak, Patricia
Li, Zhiru
MacArthur, Ryan
Munson, Matthew S.
Mehzabeen, Nurjahan
Baird, Nathan J.
Battalie, Kevin P.
Ross, David
Lovell, Scott
Carlow, Clotilde K. S.
Suga, Hiroaki
Inglese, James
author_sort Yu, Hao
collection PubMed
description Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >10(12) members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanism placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery.
format Online
Article
Text
id pubmed-5382265
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53822652017-04-21 Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases Yu, Hao Dranchak, Patricia Li, Zhiru MacArthur, Ryan Munson, Matthew S. Mehzabeen, Nurjahan Baird, Nathan J. Battalie, Kevin P. Ross, David Lovell, Scott Carlow, Clotilde K. S. Suga, Hiroaki Inglese, James Nat Commun Article Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >10(12) members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanism placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery. Nature Publishing Group 2017-04-03 /pmc/articles/PMC5382265/ /pubmed/28368002 http://dx.doi.org/10.1038/ncomms14932 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Yu, Hao
Dranchak, Patricia
Li, Zhiru
MacArthur, Ryan
Munson, Matthew S.
Mehzabeen, Nurjahan
Baird, Nathan J.
Battalie, Kevin P.
Ross, David
Lovell, Scott
Carlow, Clotilde K. S.
Suga, Hiroaki
Inglese, James
Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases
title Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases
title_full Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases
title_fullStr Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases
title_full_unstemmed Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases
title_short Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases
title_sort macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382265/
https://www.ncbi.nlm.nih.gov/pubmed/28368002
http://dx.doi.org/10.1038/ncomms14932
work_keys_str_mv AT yuhao macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases
AT dranchakpatricia macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases
AT lizhiru macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases
AT macarthurryan macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases
AT munsonmatthews macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases
AT mehzabeennurjahan macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases
AT bairdnathanj macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases
AT battaliekevinp macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases
AT rossdavid macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases
AT lovellscott macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases
AT carlowclotildeks macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases
AT sugahiroaki macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases
AT inglesejames macrocyclepeptidesdelineatelockedopeninhibitionmechanismformicroorganismphosphoglyceratemutases