Cargando…

Kinesin-4 KIF21B is a potent microtubule pausing factor

Microtubules are dynamic polymers that in cells can grow, shrink or pause, but the factors that promote pausing are poorly understood. Here, we show that the mammalian kinesin-4 KIF21B is a processive motor that can accumulate at microtubule plus ends and induce pausing. A few KIF21B molecules are s...

Descripción completa

Detalles Bibliográficos
Autores principales: van Riel, Wilhelmina E, Rai, Ankit, Bianchi, Sarah, Katrukha, Eugene A, Liu, Qingyang, Heck, Albert JR, Hoogenraad, Casper C, Steinmetz, Michel O, Kapitein, Lukas C, Akhmanova, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383399/
https://www.ncbi.nlm.nih.gov/pubmed/28290984
http://dx.doi.org/10.7554/eLife.24746
Descripción
Sumario:Microtubules are dynamic polymers that in cells can grow, shrink or pause, but the factors that promote pausing are poorly understood. Here, we show that the mammalian kinesin-4 KIF21B is a processive motor that can accumulate at microtubule plus ends and induce pausing. A few KIF21B molecules are sufficient to induce strong growth inhibition of a microtubule plus end in vitro. This property depends on non-motor microtubule-binding domains located in the stalk region and the C-terminal WD40 domain. The WD40-containing KIF21B tail displays preference for a GTP-type over a GDP-type microtubule lattice and contributes to the interaction of KIF21B with microtubule plus ends. KIF21B also contains a motor-inhibiting domain that does not fully block the interaction of the protein with microtubules, but rather enhances its pause-inducing activity by preventing KIF21B detachment from microtubule tips. Thus, KIF21B combines microtubule-binding and regulatory activities that together constitute an autonomous microtubule pausing factor. DOI: http://dx.doi.org/10.7554/eLife.24746.001